نموذج إجابة امتحان تجريبي (١) الصف الثاني عشر الأدبي نهاية الفصل الدراسي الثاني ٢٠٢٥/ ٢٠٢٥

إعداد التوجيه الفي للرياضيات

منطقة العاصمة التعليمية

الإدارة العامة لمنطقة العاصمة التعليمية

التوجيه الفنى للرياضيات

نموذج تجريبي (١) الفترة الدراسية الثانية للصف الثاني عشر أدبي للعام الدراسي ٢٠٢٥\٢٠٢ م المجال الدراسي: الرياضيات - الزمن ساعتان وخمس عشرة دقيقة - الأسئلة في Λ صفحات

أولا: (أسئلة المقال)

أجب عن الأسئلة التالية (موضحا خطوات الحل):

السؤال الأول :

(أ)عند القاء قطعة نقود متماثلة ثلاث مرات متتالية اذا كان المتغير العشوائي سي

"يعبر عن عدد الصور" أوجد مايلي:

- (١) فضاء العينة ف
- (٢) مدى المتغير العشوائي س
- (٣) احتمال كل عنصر من عناصر مدى المتغير العشوائي سه
 - (٤) دالة التوزيع الاحتمالي د للمتغير العشوائي س

عدد الصور	عناصر ف
٣	(ص، ص، ص)
۲	(ص، ص، ك)
۲	(ص، ك، ص)
0	(ك، ص، ص)
1	(ك ، ك ، ص)
	(ك ، ص، ك)
1 🔷	(ك ، ك ، ك)
Ago	(এ ১ এ ১ এ)

تابع السؤال الأول:

$$(1 \le \omega \le 1)$$
 (1) $(2 \le \omega \le 1)$ $(3 \le \omega \le 1)$

الدرجة الحل: (۱) ل (۰ <
$$w \le 1$$
) = $w \le 1$ - $w \ge 1$ -

السؤال الثاني:

(أ) اذا كان سم متغير اعشوائيا ذو حدين ومعلمتيه هما: v = v + v = v

فاحسب:

(۱) ل (س = صفر)

(r≥ w > 1) U (1)

الحل: (۱) ل(m = صفر) = $c(\cdot) = 0.5$ من الجدول حل أخر:

 $U(w=w_{c}) = c(w) = {}^{\circ}$ ق س ل س (۱- ل) $^{\circ-w}$ $c(\cdot) = c(\cdot)$ ق $c(\cdot)$ ق $c(\cdot)$ ق $c(\cdot)$ = $c(\cdot)$ = $c(\cdot)$ = $c(\cdot)$.

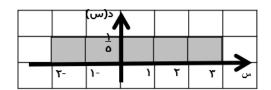
۱درجة (7) ل (۱ < $w \le 7$) = ل (w = 7) + ل(w = 7) = c (۲) + c (w = 7)

= ۰٫۱۲٤۰ + ۰٫۱۲٤۰ من الجدول ادرجة

<u>حل أخر:</u>

 $U ((< w \le 7) = U (w = 7) + U (w = 7)$ $= ^{\gamma}$ ق $_{\gamma} ((\cdot , 1))^{\gamma} ((\cdot , 1))^{\gamma}$

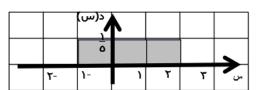
تابع السؤال الثاني:


(ب) لتكن الدالة د

- (١) أثبت أن الدالة د هي دالة كثافة احتمال
 - (Y) أوجد ل $(-1 \le w \le Y)$
 - (٣) أوجد التوقع والتباين للدالة د

الحل: (١)

لإثبات أن الدالة د هي دالة كثافة احتمال يجب اثبات أن المساحة تحت المنحنى = ١


المساحة تحت المنحنى من الشكل = مساحة المنطقة المستطيلة

$$= | لطول × العرض
$$= 0 × \frac{1}{2} = 1$$$$

الدالة د هي دالة كثافة احتمال.

ادرجة

(۲) ل (-۱ \leq س \leq ۲) = مساحة المنطقة المستطيلة

(۳) التوقع
$$\mu = \frac{1+y}{y} = \frac{1+y}{y} = \frac{1+y}{y} = \frac{1+y}{y}$$

التباین
$$\frac{7\sigma}{17} = \frac{7(7+7)}{17} = \frac{7(1-1)}{17} = 7\sigma$$
 ادرجة

السؤال الثالث:

(أ) اذا كان ق هو التوزيع الطبيعي المعياري أوجد:

<u>الحل:</u>

$$(1, \xi \ge 0) \cup -(7, 7) = \cup (0 \le 7, 7) - \cup (0 \le 3, 7)$$

(٥ درجات) تابع السؤال الثالث:

(ب) مثل بيانيا منطقة الحل المشترك للمتباينتين

<u>الحل:</u>

المعادلة المناظرة:
$$w + w = 7$$

٣	٦	•	س
٣	•	٦	ص

,	•	,	3
٣	•	7	و

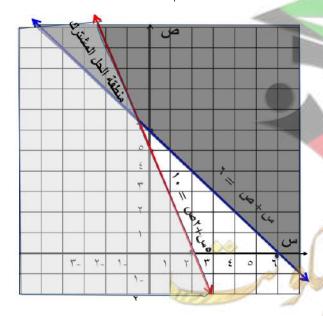
نعوض بنقطة الأصل (٠،٠) في المتباينة

٦ ≤ ٠+٠

٠ ≥ ٦ عبارة خاطئة

نظلل المنطقة التي لا تحوي نقطة الأصل

۲_	۲	*	٣
١.	•	0	ص


<u>۱</u> درجة <u>۱</u> درجة

<u>۱</u> درجة

\ درجة رجة ٢

٥٠٠در جة

درجتان للرسم

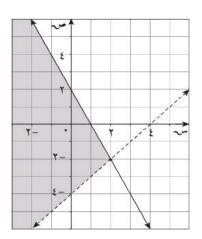
نعوض بنقطة الأصل (٠،٠) في المتباينة

1 • ≥ • + •

٠ ≤ ١٠ عبارة صحيحة

نظلل المنطقة التي تحوي نقطة الأصل

نظلل منطقة الحل المشترك


ثانيا البنود الموضوعية

أولا: في البنود (١ - ٢) عبارات لكل بند ظلل في ورقة الإجابة

- (أ) إذا كانت العبارة صحيحة (ب) اذا كانت العبارة خاطئة
- (١) دالة التوزيع التراكمي ت للمتغير العشوائي المتقطع عند القيمة أهي احتمال وقوع المتغير العشوائي سم بحيث يكون سم أصغر من أو يساوي أ.
 - $\mu = \mu$ من خواص التوزيع الطبيعي أنه متماثل حول س
 - (٣) النقطة التي تحقق المتباينة ٢س -٣ص ≤ ١ هي : (٢ ، ٠)

ثانيا: في البنود (٣-٧) لكل بند أربع اختيارات واحد فقط منها صحيح – اختر الإجابة الصحيحة ثم ظلل في ورقة الإجابة دائرة الرمز الدال عليها

(٤) المنطقة المظللة من الشكل تمثل الحل المشترك للمتباينتين:

$$7 + \omega - 2 - 1$$

$$\omega \ge - 1$$

$$\omega \le \omega - 3$$

(٥) اذا كان سر متغيرا عشوائيا متصلا دالة كثافة الاحتمال له هي:

$$c(m) = \begin{cases} \frac{1}{2} & m \\ -m & \text{odd} \end{cases}$$

فيما عدا ذلك

د ليس أي مما سبق

امتحان الفترة الدراسية الثانية للصف الثاني عشر أدبي (رياضيات) ٢٠٢٤ ٢٠٢٥ (٦) اذا كانت دالة التوزيع الاحتمالي د للمتغير العشوائي المتقطع سم هي:

فان التوقع µ للمتغير العشوائي سرم هو:

۲	١	•	m
_ 1	0	_ `	د(س)
٩	٩	٣	(-)

 $\frac{\sqrt{q}}{q}$

(٧) اذا كانت رؤوس منطقة الحل هي (٠٠٠) ، (٣ ، ٠) ، (١، ٢) ، (٠ ، ٢) لدالة الهدف ه = ٥ س + ٤ص فان القيمة العظمى لها هي :

10 (2)

(ت) ۱٤

انتهت الأسئلة

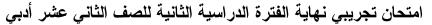
جدول إجابات البنود الموضوعية

		(・)	()	1
		(Ļ)	()	۲
		(÷)	()	٣
(7)	(÷)	(+)	()	٤
(7)	(÷)	(÷)	(1)	٥
(7)	(÷)	(+)	(1)	٦
(7)	(÷)	(÷)	(1)	٧

درجة لكل سؤال

المراجع: ------

نموذج إجابة امتحان تجريبي (٢) الصف الثاني عشر الأدبي نهاية الفصل الدراسي الثاني ٢٠٢٥/ ٢٠٢٥


إعداد التوجيه الفي للرياضيات

منطقة العاصمة التعليمية

الإدارة العامة لمنطقة العاصمة التعليمية

التوجيه الفنى للرياضيات

الزمن: ساعتان و ٥٤

عدد الصفحات: ٨

للعام الدراسي ۲۰۲۵/۲۰۲۶ نموذج رقم ۲

. 6 6

القسم الأول: أسئلة المقال أجب عن الأسئلة التالية موضحاً خطوات الحل في كل منها:

السؤال الأول: (٧ درجات)

المجال الدراسي: الرياضيات

(٤ درجات)

(أ) إذا كان فضاء العينة لأربع أسر لديها طفلان كالتالي:

ف = { (ولد ، ولد) ، (ولد ، بنت) ، (بنت ، ولد) ، (بنت ، بنت) }

فأوجد:

- (١)مدى المتغير العشوائي المتقطع سمالذي يعبر عن عدد الأولاد.
 - (٢) احتمال كل عنصر من عناصر مدى المتغير العشوائي سرم.
 - (٣)دالة التوزيع الاحتمالي د للمتغير العشوائي المتقطع س٠٠.

<u>الحل:</u>

درجة ونصف

نصف درجة

نصف درجة

نصف درجة

(۱) المدى = { ۱ ، ۱ ، ۲ }

(۲) ن (ف) = ٤

$$\left(\frac{1}{\xi}\right) = (\cdot = \kappa_{\mathbf{w}}) = (\cdot)^{2}$$

$$\left(\frac{1}{\zeta}\right) = \left(\frac{\zeta}{\xi}\right) = \left(1 = \zeta\right)$$

درجـة

(٣) دالة التوزيع الاحتمالي د للمتغير العشوائي المتقطع

۲	١	/ · [] / · /
1 2	\\ \frac{1}{Y} = \(\int \)	د (س) ع

تابع السؤال الأول: (٣ درجات)

(ب) يبين الجدول التالي دالة التوزيع الاحتمالي د للمتغير العشوائي المتقطعسم:

١.	٩	٨	٧	س
١	٣	٣	١	() .
<u></u>	<u></u>	<u></u>	<u></u>	د (س)

أوجد:

- (١) التوقع (μ).
- (۲) التباین (۲).
- (٣) الانحراف المعياري (σ).

<u>الحل:</u>

(۱) التوقع
$$\mu = \sum_{\Lambda} [w \times c(w)]$$

 $\Lambda, o = \frac{1}{\Lambda} \times 1 \cdot + \frac{\pi}{\Lambda} + \rho \times \frac{\pi}{\Lambda} + \dots \times 1 \times \frac{1}{\Lambda} = 0, \Lambda$

درجة

در حة و نصف

نصف درجة

- - σ^2 σ^2 الانحراف المعياري σ σ^2 . الانحراف المعياري σ

السؤال الثاني: (٧ درجات)

(أ) الجدول التالي يبين بعض قيم دالة التوزيع التراكمي ت للمتغير العشوائي المتقطع سم . (٣ درجات)

٤	۲	•	۲-	س
١	٠,٧٥	٠,٣٠	1,10	ت (س)

أوجد:

$$(1) \cup (1) \cup (1)$$

<u>(الحل):</u>

$$(1) \ U(\cdot < \omega \leq 2)$$

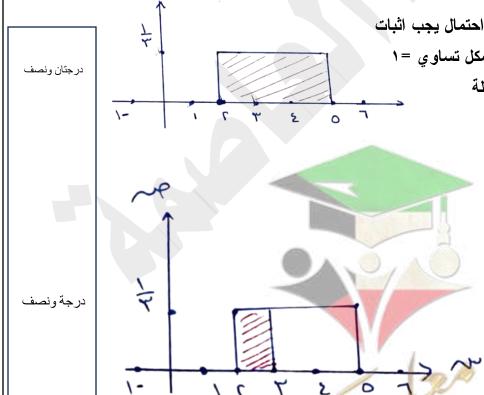
·,
$$\vee$$
 = ·, \forall · - \ =

$$(\cdot \geq \omega) \cup 1 = (\cdot < \omega) \cup (1)$$

·,
$$\vee$$
 = ·, \forall · - \ =

درجة ونصف

درجة ونصف


الصفحة (٣) من (٨)

تابع السؤال الثاني: (٤ درجات)

(ب) الدالة د تتبع التوزيع الاحتمالي المنتظم

- (١) أثبت أن الدالة د هي دالة كثافة احتمال
 - (Υ) أوجد ل $(\Upsilon \leq m \leq \Upsilon)$

<u>(الحل):</u>

(۱) لإثبات أن الدالة د هي دالة كثافة احتمال يجب اثبات أن المساحة تحت المنحنى من الشكل تساوي = ۱ المساحة = مساحة منطقة مستطيلة

$$=$$
 الطول × العرض $\frac{1}{2}$ $=$ $\frac{1}{2}$ $=$ $\frac{1}{2}$

الدالة د هي دالة كثافة احتمال

$$(\Upsilon \geq \omega \leq \Upsilon)$$
 ل $(\Upsilon \leq \omega \leq \Upsilon)$

= مساحة المنطقة المظللة

$$= 1 \times \frac{1}{\pi} = \frac{1}{\pi}$$
 وحدة مساحة

السؤال الثالث: (٧ درجات)

(أ) في تجربة إلقاء قطعة نقود متماثله ٨ مرات. أوجد التوقع والتباين إذا كان المتغير العشوائيي هو ظهور صوره.

<u>(الحل):</u>

درجة

درجة

$$\lambda=0$$
 $\frac{1}{\gamma}=0$ $\frac{1}{\gamma}=0$ $\mu=0$ $\mu=0$

تابع السؤال الثالث

(ب) مثل بيانياً منطقة الحل المشترك للمتباينتين:

(الحل):

نرسم خط الحدود للمتباينة

من المعادلة المناظرة

٣	*	•	3
1-	•	£ —	٩

نعوض بنقطة الأصل (٠،٠)

- $t \geq \cdot \cdot$
 - ₹ ≥ .
- عبارة صحيحة نظلل المنطقة التي تحوي نقطة الأصل

(٢) نرسم خط الحدود للمتباينة ص + س

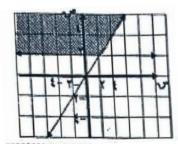
من المعادلة المناظرة - + m = -1

/4-	_	•	۳
1	•	1-	٩

نعوض بنقطة الأصل ٠ ≤ - ١ عبارة صحيحة نظلل المنطقة التى تحوي نقطة الأصل

(٥ درجات)

۲ درجة


درجة ونصف

درجة

القسم الثاني: البنود الموضوعية

إذا كانت العبارة صحيحة	(أ)
إذا كانت العبارة خاطئة	Ę)

(١) نسبة الرطوبة خلال شهر هو متغير عشوائي متقطع.

$$Y \geq 0$$
 \longrightarrow $Y \geq 0$ \longrightarrow $Y \geq 0$ \longrightarrow $Y \geq 0$

$$(7)$$
 الزوج المرتب (3 ، 3) هو ضمن مجموعة حل النظام: (2×1) هو ضمن مجموعة حل النظام: (2×1)

ثانياً: في البنود من (٤) إلى (٧) لكل بند أربعة اختيارات واحد منها صحيح ظلل في ورقة الإجابة الرمز الدال على الإجابة الصحيحة:

٣	۲	-	•	3
٠,٣	٠,١	٠,٤	7	ر ل ل

- (٤) اذا كانت دالة التوزيع الاحتمالي للمتغير العشوائي المتقطع س هي: فإن ت (٤) =
- (أ) ۲,۰ (ب) ۲,۰ (ب) ۲,۰ (۱
 - (٥)إذا كانت بعض قيم دالة التوزيع التراكمي ت للمتغير العشوائي س معطاه في الجدول التالي: فإن قيمة ك =

(أ) ٥,٠ (ب) ١ (ج) ٢,٠

(٦)إذا كانت رؤوس منطقة الحل هي (٠٠٠) ، (
$$\frac{7}{7}$$
 ، $\frac{7}{7}$) ، (٣,٠) لدالة الهدف هـ = ٦س + ٨ ص فإن القيمة العظمى لها هي:

(أ) ۲۷ (ب) ۲۶ (ب) ۲۷ (۱) ۳۷

(٧) المتغير العشوائي المتقطع فيما يلي هي:

(أ) نسبة الرطوبة خلال شهر (ب) الحرارة القصوى في منطقة معينة

(ج) طول الطلاب في الصف الثاني عشر (د) عدد الأهداف في مباراة كرة القدم

(7)	(5)	j	(1)	1
(7)	(5)	j	(1)	۲
(7)	(5)	j.	(1)	٣
(7)	(5)	(i)	(1)	٤
(7)	(5)	J.	(1)	٥
(7)	(5)) J:	(1)	٦
(7)	(5)	(·)	(1)	٧

نموذج إجابة امتحان تجريبي (٣) الصف الثاني عشر الأدبي نهاية الفصل الدراسي الثاني ٢٠٢٥/ ٢٠٢٥

إعداد التوجيه الفي للرياضيات

منطقة العاصمة التعليمية

الإدارة العامة لمنطقة العاصمة التعليمية

التوجيه الفني للرياضيات نموذج تجريبي (٣) الفترة الدراسية الثانية للصف الثاني عشر أدبي للعام الدراسي ٢٠٢٥/٢٠٢٤

الزمن: ساعتين وخمس عشرة دقيقة

المجال الدراسي: الرياضيات - القسم الأدبي

القسم الأول: أسئلة المقال

السؤال الأول: (٧ درجة)

(أ) عند إلقاء قطعة نقود متماثلة مرتين متتاليتين و ملاحظة الوجه العلوي . ليكن كل المتغير العشوائي الذي يمثل " عدد مرات ظهور كتابة " فأوجد :

(١) فضاء العينة (ف) . (٢) مدى المتغير العشوائي كل .

(٣) احتمال وقوع كل عنصر من عناصر فضاء العينة (ف) . (٤) دالة التوزيع الاحتمالي للمتغير العشوائي كل.

الإجابة: فضاء العينة ف = {(ص ، ص)،(ص ، ك)،(ك ، ص)،(ك ، ك)}

عدد الكتابات	فضاء العينة
•	(ص ، ص)
١	(ك ، ك)
1	(ك ، ص)
۲	(설 , 설)

$$\frac{1}{\xi} = (\Upsilon = \omega)$$

$$\frac{1}{\xi} = (\Upsilon = \omega)$$

×	4 (1	3	· .	س
	اللواس	<u>√</u> × ×	P	د(س)

تابع السؤال الأول (٣ درجات)

(ب)يبين الجدول التالي دالة التوزيع الاحتمالي د للمتغير العشوائي المتقطع كى .

٥	٤	٣	۲	١	س
٠,٣	٠,١	٠,٣	٠,١	٠,٢	د(س)

 σ التباين σ (۳) التباين μ الانحراف المعياري σ الانحراف المعياري σ الإجابة:

دالتوقع $\mu = \sum_{i} w_i c(w_i)$ = 1×7 , $i + 7 \times 7$, $i + 3 \times 7$, $i + 7 \times 7$,

 $^{7}\mu - (_{m},_{_{0}}) = ^{7}\sigma$ التباین $^{7}= ^{7}\sigma$ د $^{4}= ^{7}\sigma$ التباین $^{7}= ^{7}\sigma$ $^{7}= ^{7}\sigma$ التباین $^{7}= ^{7}\sigma$ $^{7}= ^{7}\sigma$ $^{7}= ^{7}\sigma$ $^{7}= ^{7}\sigma$ التباین $^{7}= ^{7}\sigma$ الت

1, 19 = 7, 17 التباين = 7, 17 = 1, 19 التباين

$$\frac{1}{7} + \frac{1}{7}$$

7+4

1777

السؤال الثائي: (٧ درجة)

(أ) الدالة د تتبع التوزيع الإحتمالي المنتظم و هي معرفة كما يلي :

رصفر: فيما عدا ذلك.

- (١) أثبت أن د هي دالة كثافة احتمال .
 - (٢) أوجد ل(١ ≤ س≤٣) .
 - (٣) أوجد التباين للدالة د

الإجابة:

مساحة المنطقة كلها تساوي
$$(o - (-\pi)) \times \frac{1}{\Lambda}$$

إذاً د هي دالة كثافة احتمال.

$$\frac{17}{\pi} = \frac{\Upsilon((\pi -) - \Theta)}{17} = \frac{\Upsilon(\beta - \psi)}{17} = \Upsilon\sigma$$
: التباين: σ

ا ۱ الرسم ۱ تابع السؤال الثاني (٤ درجات)

(أ) متغیر عشوائي س یتبع نوزیعا طبیعیا حیث أن التوقع μ ، $\lambda \Lambda = \mu$

و التباین $\sigma' = {}^{\prime}\sigma$ اوجد ل س $\geq {}^{\prime}\sigma$.

/لإجابة: µ = ۸۸

 $\circ = \sigma$, $\uparrow \circ = \sigma$

 $\eta, \tau = \frac{\lambda \lambda - V}{\sigma} = \frac{\mu - \omega}{\sigma} = \frac{\lambda \lambda - V}{\sigma} = \frac{\mu - \omega}{\sigma}$ وضع $\mu = 0$

ل(س≥٠٧) = ١ − ل(س<٠٧)

- ۱ -ل(ق<- ۲٫٦ =

•,999A £ = •,••• 17-1 =

صفحة ٤

ص

السؤال الثالث: (٧ درجة)

(أ)مثل بيانيا" منطقة الحل المشترك للمتباينتين:

ص ≥ -۲ س + ۲

ص > س + ٤

الإجابة:

نرسم خط الحدود للمتباينة ص ≤ - ٢ س + ٢

المعادلة المناظرة ص = ٢ س + ٢

نعوض بالنقطة (٠،٠) في المتباينة

Y + (·) Y-≥ ·

٠ < ٢ عبارة صحيحة نظلل المنطقة التي تحوي (٠،٠)

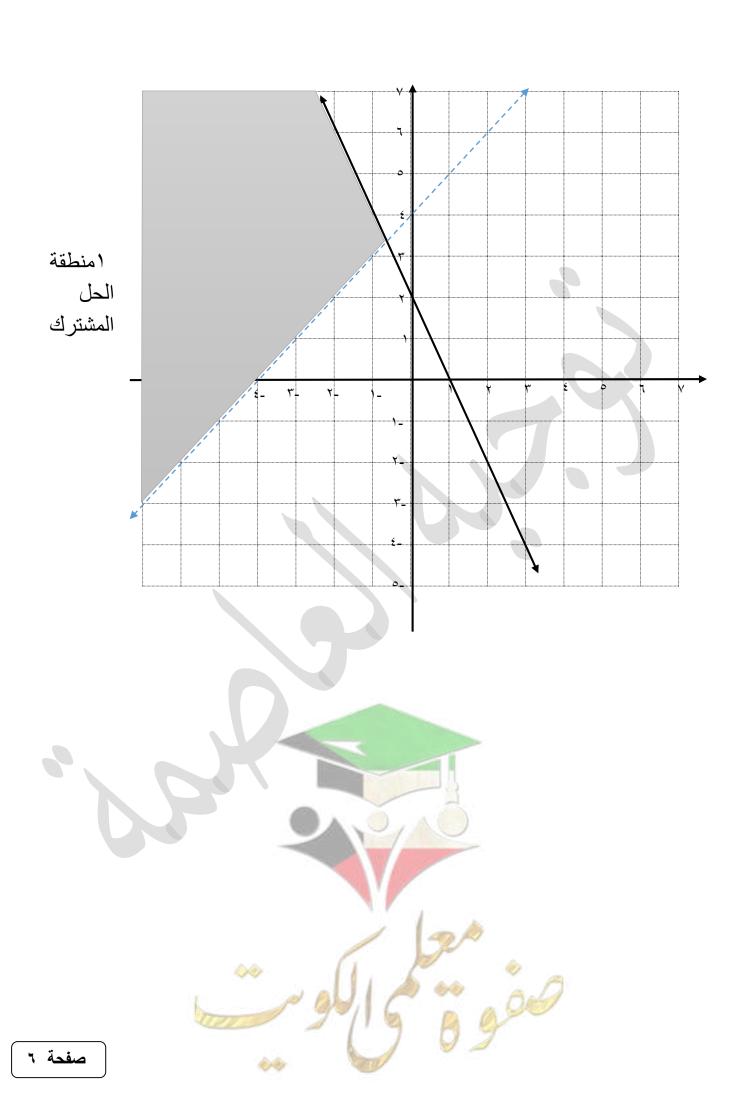
نرسم خط الحدود للمتباينة ص > س + ٤

المعادلة المناظرة ص = س + ٤

نعوض بالنقطة (٠،٠) في المتباينة

٠ > ٠ + ٤ عبارة خاطئة نظلل المنطقة التي لا تحوي (٠،٠)

االجدول


١الرسم

1

الجدول ۲

١الرسم

7

تابع السؤال الثالث (٢ درجات)

(ب) الجدول التالي يبين بعض قيم دالة التوزيع التراكمي ت للمتغير العشوائي المتقطع س .

٥	٣	۲	,	س
,	٠, ٦	٠,٢	.,10	ت(س)

(۱) ل (۱< س < m)

(۲) ل (س > ٣)

الإجابة:

أُولاً: في البنود (١ . ٣) ظلل في ورقة الإجابة (أ) إذا كانت العبارة صحيحة ، (ب) إذا كانت العبارة خاطئة .

- (١) من خواص التوزيع الطبيعي المتوسط = الوسيط = المنوال.
- (٣) النقطة ب (٤،٠) تحقق المتباينة ٣ س + ٥ ص < ١٢

ثانياً: في البنود (٤ - ٧) لكل بند أربع اختيارات واحد فقط منها صحيح - اختر الإجابة الصحيحة ثم ظلل في ورقة الإجابة الرمز الدال عليها .

(٤) إذا كانت رؤوس منطقة الحل هي (٢،٠)، (١، ٣)، (٠،٠)، (٠،٠) الدالة الهدف هـ = ٥س+٣ص فإنّ القيمة العظمي لها هي

(د) صفر

15 (7)

1. (1

٣	۲	1		£
٠,٣	٠,١	٠,٤	٠,٢	E

(ه) إذا كانت دالة التوزيع الاحتمالي د للمتغير العشوائي س هي :

فإن ت (١,٥) =

·,£(1)

(أ) ۳,۳

د ۲,۰

(ج)صفر

(ب) ۲٫۲

,

(٦) إذا كانت دالة التوزيع الاحتمالي د للمتغير العشوائي س هي:

فإن قيمة ك =

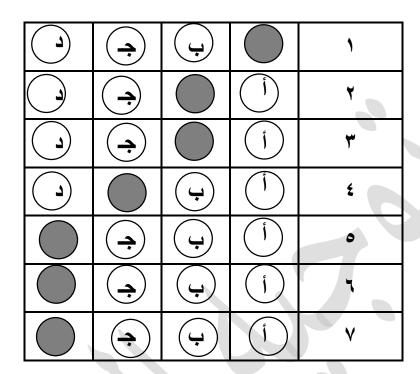
(د) ۲۰۰

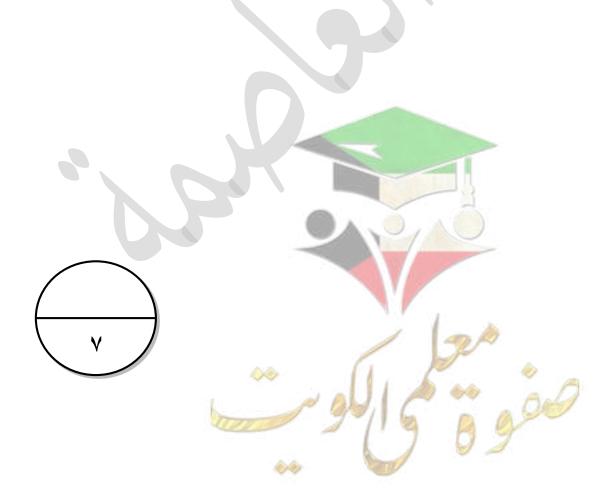
د (س) ۲٫۰

(ج) صفر

٠,٤ (ب

٧) المتغير العشوائي المتقطع في ما يلي هو :


- (أ) نسبة الرطوبة خلال الشهر الشهر
- ح طول الطلاب في الصف الثاني عشر


(ب) الحرارة القصوى في منطقة معينة

عدد الأهداف في مباراة كرة القدم

ظلل دائرة الرمز الدال على الإجابة الصحيحة لكل سؤال

درجة لكل سؤال

نموذج إجابة امتحان تجريبي (٤) الصف الثاني عشر الأدبي نهاية الفصل الدراسي الثاني ٢٠٢٥/ ٢٠٢٥

إعداد التوجيه الفي للرياضيات

منطقة العاصمة التعليمية

المجال الدراسي: الرياضيات والاحصاء

الزمن: ساعتان و ١٥ دقيقة

نموذج إجابة امتحان تجريبي (٤)

وزارة التربية منطقة العاصمة التعليمية

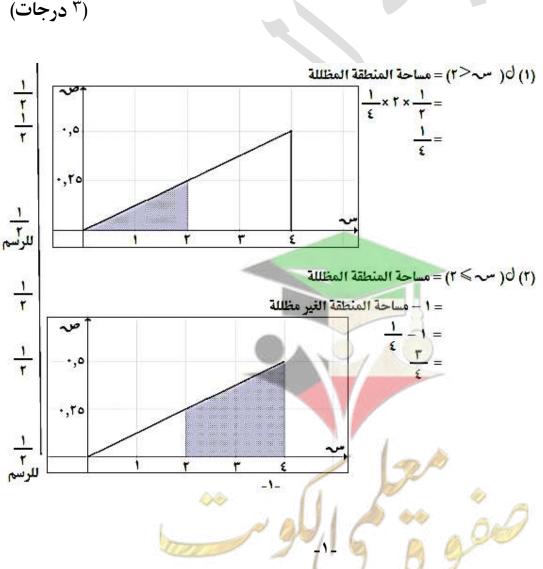
التوجيه الفني للرياضيات

عدد الصفحات: ٩

نموذج إجابة امتحان تجريبي الفترة الدراسية الثانية للصف الثاني عشر أدبى للعام الدراسي ٢٠٢٤ / ٢٠٢٥م

القسم الأول _ أسئلة المقال

يجب مراعاة الحلول الأخرى لجميع الأسئلة


السؤال الأول: (٧ درجات)

(أ) إذا كان سم متغيرًا عشوائيًا متصلاً دالة كثافة الاحتمال له هي:

$$\xi \geqslant \omega \geqslant \cdot :$$
 $\omega \approx \frac{1}{\Lambda}$ $\varepsilon(\omega) = (\omega)$ $\varepsilon(\omega) = (\omega)$ $\varepsilon(\omega) = (\omega)$

أوجد:

الحـــل:

تابع: السوال الأول:

(ب) (أ) في تجربة القاء قطعة نقود متماثلة 3 مرات. أوجد التوقع والتباين والانحراف المعياري إذا كان المتغير العشوائي 4 هو ظهور صورة

الحـــل: $\frac{1}{Y} + \frac{1}{Y}$ $\frac{1}{Y} = 0 \quad (3)$ $\frac{1}{Y} \times (4)$ $\frac{1}{Y} \times (4)$ $\frac{1}{Y} \times (4)$ $\frac{1}{Y} \times (4)$ $\frac{1}{Y} \times (4)$

 $(\partial - 1) \times \partial \times \omega = ({}^{7}\sigma)$ التباین $= {}^{2} \times \frac{1}{7} \times \frac{1}{7} \times \frac{1}{7}$

) =

الانحراف المعياري $(\sigma) = \sqrt{|لتباين|}$ | - | | | - |

السؤال الثاني: (٧ درجات)

(أ)) يبين الجدول التالي دالة التوزيع الاحتمالي للمتغير العشوائي المتقطع سم

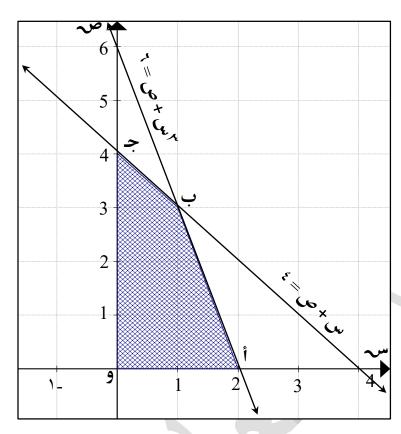
٤	٣	۲	١	س
٠,١	٠,٣	٠,٤	٠,٢	د(س)

أوجد:

- (١) التوقع (µ)
- (۲) التباین (۲)
- (^٣) الانحراف المعياري (^٣)

الحـــل:

$$(1)$$
 التوقع (μ) $=$ \sum س $\chi \times \iota$ (س χ) $=$ (1) التوقع (μ) $=$ (1)


$$\mu - (\omega) \times \Sigma = (\nabla)$$
 التباین $\Sigma = (\nabla)$ سی $\Sigma = (\nabla)$ التباین $\Sigma = (\nabla)$ سی $\Sigma = (\nabla)$ التباین $\Sigma = (\nabla)$

التباین
$$| (\sigma) = | (\pi) |$$
 الانحراف المعیاري $| (\sigma) = | (\pi) |$ التباین $| (\sigma) = | (\pi) |$ التباین $| (\sigma) = | (\pi) |$

تابع: السؤال الثاني:

(ب) المنطقة المظللة أ ب جـ و حيث أ(٢،٢) ، ب(٣،١) ، جـ(٤،٠) ، و(٠,٠)

 $7 \geqslant 0$ مجموعة حل المتباينات: س> 1 ، ص> 1 ، س $+ 0 \leq 1$ ، = 1

أوجد قيم (س، ص) التي تجعل دالة الهدف: هـ = ٢س+٣ص أكبر ما يمكن

الحـــل:

∵ دالة الهدف ه= ٢س+٣ص

بالتعويض بالنقاط

$$\alpha_{i} = 7 \times 7 + 7 \times \cdot = 3$$

$$A_{=} = 7 \times 4 + 7 \times 3 = 71$$

$$\mathbf{a}_{p} = 7 \times 7 + 7 \times 9 = 0$$
 هو

V = 1دالة الهدف هـ تكون أكبر ما يمكن عند النقطة جـ (ξ, v) وقيمتها هـ V = V

(ځ درجات)

السؤال الثالث: (٧ درجات)

(أ) مثل بيانيًا منطقة الحل المشترك للمتباينتين:

الحـــل:

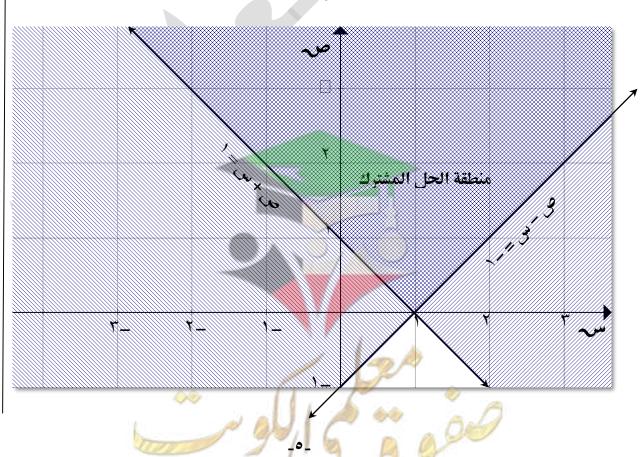
من المعادلة المناظرة: ص + س = ١

١	1_		3
•	۲	١	ص

نعوض بنقطة الأصل (٠،٠) في المتباينة فنجد أن:

- ۰ ≥۱ (عبارة غيرصحيحة)
- نظلل المنطقة التي لا تحوي نقطة الأصل.

(٥ درجات)

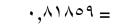

(١) نرسم خط الحدود للمتباينة : ص + س \geq ١ (٢) نرسم خط الحدود للمتباينة: ص - س \geq - ١ من المعادلة المناظرة: ص -س = - ١

١	•	1-	س
•	`-	۲_	ص

نعوض بنقطة الأصل (٠،٠) في المتباينة فنجد أن:

۰ ≥ -۱ (عبارة صحيحة)

نظلل المنطقة التي تحوي نقطة الأصل


T×1

1×1 لكُلُ مستقيم مع منطقة الحل

تابع: السؤال الثالث: (٧ درجات)

 $^{9}=(^{\mathsf{Y}}\sigma)$ وانحرافه المعياري ($^{\mathsf{Y}}=(\mu)$ متغير عشوائي متصل سه يتبع توزيعًا طبيعيًا، وسطه ($^{\mathsf{Y}}=(\mu)$ وانحرافه المعياري ($^{\mathsf{Y}}=(\mu)$ أوجد:

$$(7 \cdot 2 \cdot 1) = \frac{1}{2} =$$

صيات - تنعام الدراسي ٢٠٠١ / ١٠١٠م ==================================	. الصف التاني عسر ادبي ــ الريـ ============================	» امتحان العترة الدراسية الثانية - ====================================	ىبغ: ىمودج _إ چاب ========
	1 41 1°1 1°2		القسم الثاني _ البنو
		إلى (٣) عبارات ظلل في ورا	اولا: البنود من (١)
	(ب) إذا كانت		
ت (۹) – ۱	سہ یکون ل (سہ > ۱) = 	راكمي ت للمتغير العشوائي · ـ . ـ . ـ . ـ . ـ . ـ . ـ . ـ . ـ .	١) لدالة التوزيع الت
$(P \geqslant \mathcal{O}) \circlearrowleft - V = (P \geqslant \mathcal{O}) \circlearrowleft - V = (P \geqslant \mathcal{O})$	$^{\circ}$ ني المعياري فإن $^{\circ}$ ($^{\circ}$	ر عشوائي يتبع التوزيع الطبيع ــــــــــــــــــــــــــــــــــــ	۲) إذا كان ^ق متغيــــــــــــــــــــــــــــــــــــ
شوائي سه" ظهور صورة "يساوي ٢ 	ة فإن التوقع (µ) للمتغير العد 	قود منتظمة أربع مرات متتاليا	٣) عند إلقاء قطعة ن
يحة	فتيارات واحدة فقط منها صد ئى الإجابة الصحيحة	(٤) إلى (٧) لكل بند أربع الم ة الإجابة دائرة الرمز الدال عا	ثانيا: في البنود من ظلل في ورقا
	شوائي المتقطع سـم هي :	لتوزيع الاحتمالي للمتغير العن	٤) إذا كانت دالة ا
	٣ ٢	,	س
	•,٣	٠,٤ ٠,٢	د(س)
		0.4	فإن ت (٣) =
٠ (۵)	· , ۲ (ج)	(ب) ۰٫۲	·, £ (1)
ودالة كثافة الاحتمال له هي:	۔ ۲	: \(\frac{1}{V}\) =	د(س)
£9 (2)	(خ)	(ب) ۲	فإن التباين = (أ) <u>٧</u> ١٢
1 0	عة حل النظام التالي:	ا التالية هي ضمن مج <mark>مو</mark> ،	٦) أي من النقاط
	010	4	(ص< ۲ + س [ص≥ ۱ – س
(۲ ، ۱) (۵)	(ج) (۲۰۱۰)	(ب) (۲۰-۳)	(٣- ٠١)(أ)
		متباينة: ٣–س≷٦ هي:	٧) مجموعة حل ال
[° · ∞−) (3)	[~- · ∞−) (>)	(ب) (۳،∞−)	$(7-,\infty-)$
	أنتهت الأسئلة ٧-	8 900	_, , _ , _ , _ , _ , _ , _ , _ , _ ,

إجابة البنود الموضوعية

	رقم البند			
٠	ج	ę.	ĵ	١
٥	ج	ڔ	Û	۲
٥	ج	ب	()	٣
3	ج	ڔڹ	ĵ	٤
3	ج	ڔڹ	ĵ	٥
•	ج	ب	ĵ	7
٥	?	ب	(1)	V

نموذج إجابة امتحان تجريبي (٥) الصف الثاني عشر الأدبي نهاية الفصل الدراسي الثاني ٢٠٢٥/ ٢٠٢٥

إعداد التوجيه الفي للرياضيات

منطقة العاصمة التعليمية

الإدارة العامة لمنطقة العاصمة التعليمية التوجيه الفني للرياضيات

نموذج تجربي (٥) الفترة الدراسية الثانية للصف الثاني عشر أدبي

للعام الدراسي ٢٠٢٥/٢٠٢٤ م

الزمن : ساعتين وخمس عشرة دقيقة

المجال الدراسي: الرياضيات

القسم الأول: أسئلة المقال

أجب عن الأسئلة التالية موضحاً خطوات الحل

السؤال الأول: (٧ درجات)

(أ) يبين الجدول التالي دالة التوزيع الإحتمالي للمتغير العشوائي المتقطع س

0	٤	٣	۲	1	س
٠,٣	٠,١	٠,٣	٠,١	٠,٢	د(س)

التوقع (μ) = $\sqrt{\mu}$ سر × د (سر)

 $T, T = \cdot, T \times \rho + \cdot, 1 \times \epsilon + \cdot, T \times T + \cdot, 1 \times T + \cdot, T \times 1 =$

$${}^{\mathsf{T}}(\mathsf{T},\mathsf{T}) = {}^{\mathsf{T}}(\mathsf{T}) + {}^{\mathsf{T}}(\mathsf{T}) =$$

\(\frac{1}{1}\)

1

(٤ درجات)

تابع السؤال الأول:

(ب) مثل بيانيا منطقة الحل المشترك للمتباينتين :

س ـ ۲ ص > ۲

المعادلة المناظرة: س - ٢ ص = ٢

۲_	2	٠	س
۲_	•	-	و

بالتعويض بنقطة الأصل و (٠ ، ٠)

عبارة خاطئة

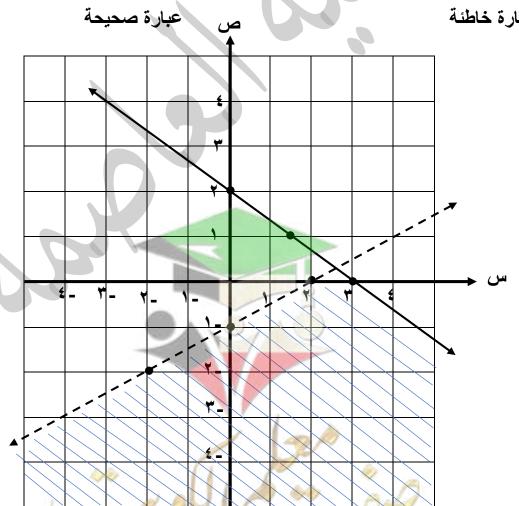
٦	>	ص	٣	+	/ 44	۲

المعادلة المناظرة: ٢ س + ٣ ص = ٦

١,٥	٣	•	۳
1	*	۲	و

بالتعويض بنقطة الأصل و (٠ ، ٠)

۲ س + ۳ ص ≤ ۲


(1+1)

ل ۲

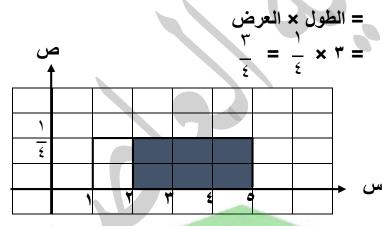
ل ۱

🛕 المنطقة المشتركة


```
السؤال الثانى: (٧ درجات)
( ۳ درجات )
     (أ) بين أياً من النقاط التالية أ (١،١)، ب (٢،٠)، ج (١،١)
                                   تحقق المتباينة ٥ س ـ ٢ ص ٧ ٧
                                      ( الحل )
                                               ا ( ۱ ، - ۱ ) ، ه س - ۲ ص > ۷
                      V = V + 0 = 1 - X - 1 = 0 + V = V الطرف الأيمن = 0 س – 7 ص
                                                 وحيث أن ٧ ≯ ٧
                                      أ ( ١ ، - ١ ) لا تحقق المتباينة
                                                ب ( ۲ ، ، ) ، ه س ـ ۲ ص > ۷
                                1 \cdot = \cdot \times 1 - 1 \times 0 = 0 \times 1 - 1 \times 0 = 1 \times 1 \times 0 الطرف الأيمن
                                               و حیث أن ۱۰ > ۷
                                          ب ( ۲ ، ۰ ) تحقق المتباينة
                                              جـ ( - ١ ، ١ ) ، ٥ س – ٢ ص > ٧
                                                    الطرف الأيمن = ٥ س - ٢ ص
                                     -= 1 - 0 - = 1×1 - 1- × 0 =
                                             وحيث أن ۔ ٧ لم 🤍
                                       ج ( - ۱ ، ۱ ) لا تحقق المتباينة
```

تابع السؤال الثاني:

(ب) لتكن الدالة د:


$$c \geq m \geq 1$$
 : $\frac{1}{2}$ $c \leq m \leq 0$: $c \leq m \leq 1$ c

تتبع التوزيع الإحتمالي المنتظم

(۲) التباین

(الحل)

(1 T)

$$\frac{(1-0)}{17} = \frac{(1-0)}{17} = (7\sigma)$$
 التباین

$$\frac{\varepsilon}{r} = \frac{17}{17} =$$

السؤال الثالث (٧ درجات): (٤ درجات)

(أ) يمثل المتغير العشوائي س الزمن (بالدقائق) الذي يستغرقه أحد الطلاب للوصول إلى المدرسة ، وهو متغير يتبع التوزيع طبيعي توقعه ١٦ = µ

 $\xi = T_{\sigma}$

احسب ل (۱۲ ≤ س ≤ ۲۰)

(الحل)

نضع س١ = ١٢

نضع س۲ = ۲۰

 $7 = \frac{17 - 7}{7} = \frac{\mu - 7}{\sigma} = 7$

ل (١٢ ≤ س ≤ ٢٠) = ل (-٢ ≤ ق ≤ ٢)

= ل (ق ≤ ۲) – ل (ق ≤ ۲)

·, · Y Y V 0 _ · , 9 V Y Y 0 =

.,9010 =

(باستخدام جدول التوزيع الطبيعي المعياري)

تابع السؤال الثالث:

(ب) في تجربة إلقاء قطعة نقود متماثلة ١٠ مرات ،احسب احتمال ظهور كتابة ٤ مرات.

(الحل)

ل (س = ٤) = د (٤) = 'ق؛ × (۰,۰) ؛ × (۱ – ۰,۰) ۰ - ۰

 $\frac{1}{Y} \qquad \qquad \frac{1}{Y} \times (\cdot, \cdot) \times \frac{(\cdot, \cdot) \times \frac{(\cdot, \cdot) \times (\cdot, \cdot)}{(\cdot, \cdot) \times (\cdot, \cdot)}}{(\cdot, \cdot) \times (\cdot, \cdot)} = \frac{1}{Y} \times (\cdot, \cdot) \times \frac{(\cdot, \cdot) \times (\cdot, \cdot)}{(\cdot, \cdot) \times (\cdot, \cdot)} = \frac{1}{Y} \times (\cdot, \cdot) \times \frac{(\cdot, \cdot) \times (\cdot, \cdot)}{(\cdot, \cdot) \times (\cdot, \cdot)} = \frac{1}{Y} \times (\cdot, \cdot) \times \frac{(\cdot, \cdot) \times (\cdot, \cdot)}{(\cdot, \cdot) \times (\cdot, \cdot)} = \frac{1}{Y} \times (\cdot, \cdot) \times \frac{(\cdot, \cdot) \times (\cdot, \cdot)}{(\cdot, \cdot) \times (\cdot, \cdot)} = \frac{(\cdot, \cdot) \times (\cdot, \cdot)}{(\cdot, \cdot) \times (\cdot, \cdot)} = \frac{(\cdot, \cdot) \times (\cdot, \cdot)}{(\cdot, \cdot) \times (\cdot, \cdot)} = \frac{(\cdot, \cdot) \times (\cdot, \cdot)}{(\cdot, \cdot) \times (\cdot, \cdot)} = \frac{(\cdot, \cdot) \times (\cdot, \cdot)}{(\cdot, \cdot) \times (\cdot, \cdot)} = \frac{(\cdot, \cdot) \times (\cdot, \cdot)}{(\cdot, \cdot) \times (\cdot, \cdot)} = \frac{(\cdot, \cdot) \times (\cdot, \cdot)}{(\cdot, \cdot) \times (\cdot, \cdot)} = \frac{(\cdot, \cdot) \times (\cdot, \cdot)}{(\cdot, \cdot) \times (\cdot, \cdot)} = \frac{(\cdot, \cdot) \times (\cdot, \cdot)}{(\cdot, \cdot) \times (\cdot, \cdot)} = \frac{(\cdot, \cdot) \times (\cdot, \cdot)}{(\cdot, \cdot) \times (\cdot, \cdot)} = \frac{(\cdot, \cdot) \times (\cdot, \cdot)}{(\cdot, \cdot) \times (\cdot, \cdot)} = \frac{(\cdot, \cdot) \times (\cdot, \cdot)}{(\cdot, \cdot) \times (\cdot, \cdot)} = \frac{(\cdot, \cdot) \times (\cdot, \cdot)}{(\cdot, \cdot) \times (\cdot, \cdot)} = \frac{(\cdot, \cdot) \times (\cdot, \cdot)}{(\cdot, \cdot)} = \frac{(\cdot, \cdot)}{(\cdot, \cdot)} = \frac{(\cdot$

·, Y · ○ · A ≈

ثانيا البنود الموضوعية

أولاً: في البنود (١ – ٣) ظلل في ورقة الإجابة (أ) إذا كانت العبارة صحيحة وظلل (ب) إذا كانت العبارة خاطئة:

- المساحة تحت منحني التوزيع الطبيعي تساوي واحد
- التوزيع التالي يمثل دالة التوزيع الإحتمالي د للمتغير العشوائي س

٣	۲	1	س
٠,١	٠,٥	٠, ٤	د (س)

اذا كان س، ص، ع أعداد حقيقية ، ع < ، وكان س < ص فإن س ع > ص ع

ثانياً: في البنود (٤ – ٧) لكل بند ٤ اختيارات إحداها فقط صحيحة ظلل في ورقة الإجابة الرمز الدال على الإجابة الصحيحة:

- ينتج مصنع سيارات ٢٠٠ سيارة في الشهر ، إذا كانت نسبة انتاج السيارات المعيبة ٢,٠ فإن التوقع لعدد السيارات المعيبة المنتجة في الشهر يساوي
- (V) (V) (I)

ھي :	متقطع	حدودها	ي خط	بنة الت	المتباي	0
------	-------	--------	------	---------	---------	---

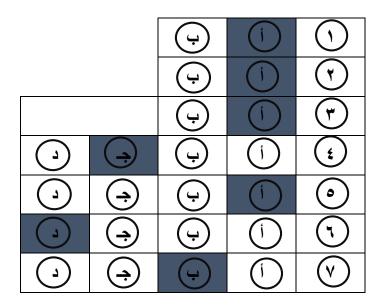
س + ۲ ص ≥	(r)	<u>ا</u> س + ص > ه

إذا كانت دالة التوزيع الإحتمالي د للمتغير العشوائي س هي

٣	۲	1	س ،
٠,٣	٠,١	٠,٤	د (س) ۲٫۰

فإن ت (۱٫٥) =

إذا كان س متغيرا عشوائيا متصلا ، دالة كثافة الإحتمال له هي :


$$1 \ge m \ge 0$$
 $= (m)$ $= (m)$ مفر في ما عدا ذلك

$$=(\frac{1}{\sqrt{2}}< 0$$
 فإن ل (س

$$\frac{1}{7} \quad \boxed{2} \qquad \frac{1}{2} \quad \boxed{3}$$

$$(A)$$

اجابة البنود الموضوعية

