
معادلات الحركة المعجلة بانتظام في خط مستقيم

إعداد الطالب: حسن الوزان

في هذا النوع من الحركة يتغير مقدار السرعة مع ثبوت الاتجاه

بفرض أن جسم بدأ الحركة في خط مستقيم بسرعة ابتدائية (v_0) ثم أخذت سرعته تتزايد بانتظام مع مرور الزمن (v_0) حتى أصبحت سرعته نهائية (v_0) فيكون الجسم قطع مسافة (v_0) كما بالشكل الموضح يمكن الربط بين هذه الكميات بالمعادلات الصبحت سرعته نهائية (v_0) فيكون التي تسمى معادلات الحركة المعجلة بانتظام في خط مستقيم .

 $V = v_0 + a t$ المعادلة الأولى $a = \frac{v - v_0}{t}$

تتناسب السرعة النهائية لجسم يتحرك بعجلة منتظمة طرديا مع

مثال :- بدأ جسم حركته من السكون بعجلة تسارع منتظمة مقدارها m/s^2 لمدة m/s^2 احسب السرعة النهائية للجسم بعد تلك الفترة .

$$V = v_0 + a t = 0 + 3 \times 20 = 60 \text{m/s}$$

ملاحظة: $_{-}$ عندما يتحرك الجسم بعجلة تباطؤ فتقل سرعته حتى تنعدم ($_{ m v}=0$) ويسمى الزمن اللازم لذلك بزمن التوقف

مثال :- قطار يتحرك بسرعة m/s مقدار ها m/s^2 المكابح فتحرك القطار بعجلة تباطؤ منتظمة مقدار ها m/s^2 (s^2) احسب الزمن اللازم لتوقف القطار .

$$V = v_0 + a t$$
 $0 = 40 + (-4) t$ $-40 = -4t$ $t = 10s$

ثانيا: - المعادلة الثانية: -

 $d = v_0 t + \frac{1}{2} at^2$ استنتاج المعادلة

$$V = \frac{V + V_0}{2} \qquad d = \frac{V + V_0}{2} \qquad x \ t$$

$$V = V_0 + at$$

$$d = \frac{V_0 + at + V_0}{2} \times t$$

$$d = \frac{2V_0 t + at^2}{2}$$
 $d = V_0 t + \frac{1}{2} a t^2$

المسافة التي يقطعها جسم يتحرك بعجلة منتظمة تتناسب طرديا مع

مثال :- سيارة تتحرك بسرعة (120) Km/h ضغط قائدها على دواسة الفرامل فتناقصت سرعته بانتظام حتى توقف تماما بعد (20)s

1- عجلة السيارة خلال تلك الفترة.

$$V_o \ = \ 120 \ x 1000/3600 = 33.33 m/s$$

$$V = V_o \ + \ at$$

$$0 \ = 33.33 + ax20 \qquad - 33.33 = a \ x \ 20 \qquad a = - 33.33/20$$

$$a \ = -1.67 m/s^2$$

2- الإزاحة التي صنعتها السيارة خلال تلك الفترة.

$$d = V_0 t + 0.5 a t^2$$

$$d = 33.33x20 + 0.5 x-1.67 x 20^2 = 666.6 - 334 = 332.6 m$$

$$\frac{1}{2}$$
 $V^2 = v_0^2 + 2 \, a \, d$ $V^2 = v_0^2 + 2 \, a \, d$ استنتاج المعادلة $V^2 = V_0^2 + 2 \, a \, d$ $V^2 = (V_0 + a \, t)^2 = V_0^2 + 2 V_0 \, a \, t + a^2 t^2$ $V^2 = V_0^2 + 2 a \, (V_0 t + 0.5 a t^2)$ $V^2 = V_0^2 + 2 a \, (V_0 t + 0.5 a t^2)$

معادلة الهروب من الزمن

$$V^2 = V_o^2 + 2ad$$

مربع السرعة النهائية التي يبلغها جسم يتحرك بعجلة منتظمة تتناسب طرديا مع

مثال :- بدأت سيارة حركتها من السكون بعجلة منتظمة فبلغت سرعتها 25)m/s بعد أن قطعت مسافة مقدارها (200)m احسب :-

1- عجلة حركة السيارة خلال تلك الفترة.

$$V^2 = V_0^2 + 2ad$$
 (25)² = 0 + 2 a x200
a = 625 / 400 = 1.56 m/s²

2- الزمن اللازم لتلك الرحلة.

$$V = V_0 + a t$$
 $25 = 0 + 1.56 x t$ $t = 25 / 1.56 = 16 s$

 $(K=9x10^9)$ يمكنك استخدام الثابت التالى عند الحاجة إليه