

وزارة التربية التوجيه الفني العام للعلوم

بنك الأسئلة لمادة الكيمياء الصف الحادي عشر علمي الفصل الدراسي الأول للعام الدراسي 2025-2024 م

فريق إعداد ومراجعة بنك 11ع كيمياء

الموجه الفني العام للعلوم الأستاذة: دلال المسعود

الوحدة الأولى الإلكترونــات في الذرة

الفصل الأول

الدرس 1-1 الأفلاك الجزيئية

من العبارات التالية:	ذي تدل عليه كل	و المصطلح العلمي ال	, القوسين الاسم أ	الأول: اكتب بين	السؤال

	تالية:	سؤال الأول: اكتب بين القوسين الاسم او المصطلح العلمي الذي تدل عليه كل من العبارات الن
(1. منطقة الفراغ المحيطة بنواة الذرة التي يتواجد فيها الالكترون.
(2. نظرية تفترض أن الالكترونات تشغل الأفلاك الذرية في الجزيئات.
`		 3. نظرية تفترض تكوين فلك جزيئي من الافلاك الذرية يغطي كل من النواتين
(ق سري عسرون سويل سه جريدي من الأعرب المدوية المسايل على المدوية المدوية المدوية المدوية المدوية المدوية المدوية المدرا بطنين.
(4. عرج من مورع عدم المورد المورد المورد على المردد على المردد المورد ال
`		يون مسور المسين مسترين. 5. نوع من أنواع تداخل الأفلاك الذرية يتم فيه تداخل فلكين ذربين جنباً إلى جنب
(و. ترع من الواع عامل المحارث العارية علم عيد عامل علين دريين بب إلى بب عندما يكون محورا الفلكين متوازيين.
`		
(6. نوع من أنواع الروابط التساهمية ينتج من تداخل محوري لفلكين ذربين رأساً لرأس.
1		7. نوع من أنواع الروابط التساهمية ينتج من تداخل جانبي لفلكين ذربين جنباً إلى \
(جنب عندما يكون محورا الفلكين متوازيين.
		. 16.2 " (C. "
	<u>بين</u>	السؤال الثاني: اكتب كلمة (صحيحة) بين القوسين المقابلين للعبارة الصحيحة وكلمة (خطأ) ب القديدة بالقابات الجبارة الفطأ في كان مماما
1	\	لقوسين المقابلين للعبارة الخطأ في كل مما يلي: 1. يمكن تحديد مكان الإلكترون وسرعته حول نواة الذرة بدقة تامة.
(<i>)</i>	 1. يحل حديد من المحادية من التداخل المحوري للأفلاك الذرية رأسا لرأس.
'	,	 على المسافة بين الذرتين المترابطتين وعلى عدد الروابط التي
()	و. تعمد تعدد الرابعة الميجه (0) على المداعة بين الدربين المدربطين وعلى عدد الروابع الذي تشكلها هاتان الذربان .
()	4. يمكن أن تحتوي أحد الجزيئات على الرابطة (π) فقط.
()	5. الرابطة التساهمية سيجما (δ) أضعف من الرابطة التساهمية باي (π).
Ì	,	6. الجزيئات التي تحتوي على الرابطة التساهمية باي (π) يمكنها أن تتفاعل بالإضافة في المركبات
()	العضوية.
()	7. تنتج الرابطة التساهمية باي (π) من تداخل الأفلاك الذرية جنباً إلى جنب.
()	8. جميع الروابط في جزيء الأمونيا (NH_3) من النوع سيجما (δ). علما بأن ($H_{-7}N$)

9. يحتوي جزيء الإيثاين $(H-C \equiv C-H)$ على ثلاثة روابط تساهمية من النوع باي (π) .

(4)		التوجيه الفني العام للعلوم – بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) – 2024 / 2025
()	
1	`	11. ترتبط ذربا الكلور (17Cl) في الجزيء (Cl2) برابطة تساهمية أحادية نتيجة تداخل الفلكين(3pz)
()	من كل من الذرتين محورياً.
()	δ . جميع الروابط التساهمية الأحادية تكون من النوع سيجما (δ) .
1	`	13. جميع الروابط التساهمية في الصيغة البنائية لغاز ثاني أكسيد الكربون $(\mathbf{O} = \mathbf{C} = \mathbf{O})$ من النوع
(,	باي.
()	14. تتواجد الرابطة سيجما (δ) والرابطة باي (π) في الجزيئات التي تحتوي على رابطة تساهمية
`	,	ثنائية أو رابطة تساهمية ثلاثية .
()	π . الرابطة التساهمية الثلاثية تتكون من ثلاث روابط باي (π) .
		السؤال الثالث: أكمل الفراغات في الجمل التالية بما يناسبها علمياً:
		1 - الروابط التساهمية الأحادية في الجزيئات مثل (NH ₃) أو (CH ₄) ، تكون من النوع
.(π	اي (:	2 - طبقا لقوة الرابطة تعتبر الرابطة التساهمية سيجما (8) الرابطة التساهمية ب
		3 - يتكون أولاً في الرابطة التساهمية الثنائية الرابطة تليها الرابطة
	ساو <i>ي</i> -	$(H_2C=CH_2)$ عدد الروابط التساهمية سيجما δ) حول ذرة الكربون الواحدة في جزيء الإيثين
		بينما عدد الروابط التساهمية باي (π) في الجزيء نفسه تساوي
		δ – تنتج الرابطة التساهمية سيجما (δ) عن التداخل ––––––– للأفلاك الذرية.
		-6 تنتج الرابطة التساهمية باي (π) عن التداخل $$ للأفلاك الذرية.
		$\mathrm{CH_3-C}\equiv\mathrm{CH}$) في جزيء البروباين ($\mathrm{CH_3-C}\equiv\mathrm{CH}$) يساوي ––––––
		، بينما عدد الروابط التساهمية باي (π) في الجزيء نفسه يساوي
همية	التساه	8- عند تكوين الجزيء H2، يتداخل الفلكين الذربين (1s) تداخلاً لتكوين الرابطة
		سيجما (علما بأن ₁ H) .
		9- تداخل فلكين (p و p) دائماً هو تداخل من النوع
	•	10- عدد الروابط سيجما في جزيء كلوريد الهيدروجين (HCl) يساوي
		11- عند تكوين جزيء الكلور (Cl ₂) يكون تداخل الفلكين (3pz) لذرتي الكلور من النوع
		لتكوين الرابطة التساهمية
(1H,	₁₇ Cl	12- تنتج الرابطة التساهمية سيجما في الجزيء (HCl) ، من تداخل الفلكين (علما بأن
		على رابطة تساهمية ثلاثية ، رابطة واحدة منها من النوع $$
		والرابطتين الآخرتين من النوع
ط باي	الروابه	الم عدد الروابط التساهمية سيجما في جزيء الإيثاين ($H-C \equiv C-H$) يساوي $$ بينما عدد –14
		في الجزيء نفسه يساوي

202	5 / 2024 —	الجزء الأول)	عشر العلمي ـ (كيمياء - الصف الحادي	للعلوم – بنك أسئلة الك	التوجيه الفنى العام
-----	------------	--------------	----------------	----------------------	------------------------	---------------------

(5)

السؤال الرابع: اختر الإجابة الصحيحة لكل من العبارات التالية وضع علامة (\sqrt) في المربع المقابل لها:

	1. الرابطة التساهمية الثلاثية تتكون من أحد ما يلي :
$(\pi$) ورابطتین بای (δ) ورابطتین بای	\square ثلاث روابط سيجما δ
رابطة باي (π) ورابطتين سيجما (δ)	\square ثلاث روابط باي $(\pi$)
: C ₆ H ₆	2. نوع الرابطة بين ذرات الكربون والهيدر وجين في جزئ الب
ا باي	□ سيجما □
هيدروجينية	□ ثنائية □
ة : (علما بأن 17Cl - 1H - 7N - 17Cl)	3. أحد الجزيئات التالية يحتوي على رابطة تساهمية ثلاثي
H_2 [-
Cl ₂ [☐ HCl ☐
	H_2) في جزيء الهيدروجين (δ) في جزيء الهيدروجين
$\mathbf{s} - \mathbf{p}$	
$\mathbf{sp} - \mathbf{sp}$	□ p-p □
	δ . تنتج الرابطة سيجما δ) في جزيء فلوريد الهيدروجين δ
$s-p_z$ [S-S
-	<u> </u>
sp - sp	p−p □
	p − p □ 6. إحدى العبارات التالية <u>صحيحة ب</u> النسبة للمركب CH ≡
	6. إحدى العبارات التالية <u>صحيحة ب</u> النسبة للمركب CH ≡
: СН ₃ С	6. إحدى العبارات التالية <u>صحيحة ب</u> النسبة للمركب Ξ Ξ عدد الروابط Ξ يساوي Ξ و Ξ يساوي Ξ
$ ext{CH}_3 ext{C}$: $ ext{CH}_3 ext{C}$ عدد الروابط $ ext{d}$ يساوي $ ext{d}$ يساوي 5	6. إحدى العبارات التالية <u>صحيحة ب</u> النسبة للمركب Ξ Ξ عدد الروابط Ξ يساوي Ξ و Ξ يساوي Ξ
$ ext{CH}_3 ext{C}$: $ ext{CH}_3 ext{C}$ عدد الروابط $ ext{d}$ يساوي $ ext{d}$ يساوي 5	$^{\circ}$ و $^{\circ}$ العبارات التالية $^{\circ}$ صحيحة بالنسبة للمركب $^{\circ}$ و $^{\circ}$ يساوي $^{\circ}$ عدد الروابط $^{\circ}$ يساوي $^{\circ}$ و $^{\circ}$ يساوي $^{\circ}$ عدد الروابط $^{\circ}$ يساوي $^{\circ}$ و $^{\circ}$ يساوي $^{\circ}$ عدد الروابط $^{\circ}$ يعتبر من خصائص الروابط سيجما $^{\circ}$ ($^{\circ}$):
ho : $ ho$ $ ho$: $ ho$	$^{\circ}$ و $^{\circ}$ العبارات التالية $^{\circ}$ صحيحة بالنسبة للمركب $^{\circ}$ و $^{\circ}$ يساوي $^{\circ}$ عدد الروابط $^{\circ}$ يساوي $^{\circ}$ و $^{\circ}$ يساوي $^{\circ}$ عدد الروابط $^{\circ}$ يساوي $^{\circ}$ و $^{\circ}$ يساوي $^{\circ}$ عدد الروابط $^{\circ}$ يعتبر من خصائص الروابط سيجما $^{\circ}$ ($^{\circ}$):
CH_3C : CH_3C] عدد الروابط δ يساوي δ و π يساوي δ عدد الروابط δ يساوي δ يساوي δ أضعف من الروابط باي δ δ تتكون بعد تكوين الرابطة باي δ	 6. إحدى العبارات التالية صحيحة بالنسبة للمركب CH = 3. إحدى العبارات التالية صحيحة بالنسبة للمركب 3 = □ عدد الروابط δ يساوي 5 و π يساوي 2 □ عدد الروابط δ يساوي 6 و π يساوي 5 □ □ 7. أحد ما يلي يعتبر من خصائص الروابط سيجما (δ): □ تنتج عن التداخل الجانبي لفلكين ذريين □ تنتج عن التداخل المحوري لفلكين ذريين □ تنتج عن التداخل المحوري لفلكين ذريين □
ho : CH ₃ C : $ ho$ عدد الروابط $ ho$ يساوي $ ho$ و $ ho$ يساوي $ ho$ عدد الروابط $ ho$ يساوي $ ho$ و $ ho$ يساوي $ ho$ $ ho$ عدد الروابط $ ho$ اضعف من الروابط $ ho$ $ h$	 6. إحدى العبارات التالية صحيحة بالنسبة للمركب CH ≡ □ عدد الروابط δ يساوي 5 و π يساوي 2 □ عدد الروابط δ يساوي 6 و π يساوي 2 7. أحد ما يلي يعتبر من خصائص الروابط سيجما (δ): □ تنتج عن التداخل الجانبي لفلكين ذريين □ تنتج عن التداخل المحوري لفلكين ذريين □ الرابطة بين ذرتي الأكسجين في الجزيء (O₂):
CH_3C : CH_3C : π عدد الروابط δ يساوي δ و π يساوي δ عدد الروابط δ يساوي δ يساوي δ اضعف من الروابط باي δ δ تتكون بعد تكوين الرابطة باي δ علما بأن δ δ δ تساهمية ثنائية من النوع باي δ δ	 6. إحدى العبارات التالية صحيحة بالنسبة للمركب CH = 3. إحدى العبارات التالية صحيحة بالنسبة للمركب 3 = □ عدد الروابط δ يساوي 5 و π يساوي 2 □ عدد الروابط δ يساوي 6 و π يساوي 5. 7. أحد ما يلي يعتبر من خصائص الروابط سيجما (δ): □ تنتج عن التداخل الجانبي لفلكين ذربين □ تنتج عن التداخل المحوري لفلكين ذربين □ تنتج عن التداخل المحوري لفلكين ذربين □ تساهمية أحادية من النوع سيجما (δ): □ تساهمية أحادية من النوع سيجما (δ)
ho : CH ₃ C : $ ho$ عدد الروابط $ ho$ يساوي $ ho$ و $ ho$ يساوي $ ho$ عدد الروابط $ ho$ يساوي $ ho$ و $ ho$ يساوي $ ho$ $ ho$ عدد الروابط $ ho$ اضعف من الروابط $ ho$ $ h$	 6. إحدى العبارات التالية صحيحة بالنسبة للمركب CH = 3. إحدى العبارات التالية صحيحة بالنسبة للمركب 3 و π يساوي 3 و π يساوي 2 و π يساوي 2 و π يساوي 5 و π يساوي 5. 7. أحد ما يلي يعتبر من خصائص الروابط سيجما (δ): □ تنتج عن التداخل الجانبي لفلكين ذربين □ تنتج عن التداخل المحوري لفلكين ذربين 8. الرابطة بين ذرتي الأكسجين في الجزيء ((Ω)): □ تساهمية أحادية من النوع سيجما (δ) □ تساهمية ثنائية من النوع سيجما (δ)
CH_3C T	 العبارات التالية صحيحة بالنسبة للمركب CH = 3. إحدى العبارات التالية صحيحة بالنسبة للمركب 3 و π يساوي 3 و π يساوي 2 و π يساوي 2 و π يساوي 2 و π يساوي 5. عدد الروابط δ يساوي 6 و π يساوي 3. أحد ما يلي يعتبر من خصائص الروابط سيجما (δ): تنتج عن التداخل الجانبي لفلكين ذريين تنتج عن التداخل المحوري لفلكين ذريين الرابطة بين ذرتي الأكسجين في الجزيء ((Ω) : تساهمية أحادية من النوع سيجما (δ) تساهمية ثنائية من النوع سيجما (δ) الروابط في الصيغة البنائية التالية (H-C = C-H):
CH_3C : CH_3C : π عدد الروابط δ يساوي δ و π يساوي δ عدد الروابط δ يساوي δ يساوي δ اضعف من الروابط باي δ δ تتكون بعد تكوين الرابطة باي δ علما بأن δ δ δ تساهمية ثنائية من النوع باي δ δ	 6. إحدى العبارات التالية <u>صحيحة بالنسبة للمركب Δ يساوي 3 و π يساوي 3 و π يساوي 2 و π يساوي 5 و π يساوي 5 و π يساوي 5 و π يساوي 1 .</u> 7. أحد ما يلي يعتبر من خصائص الروابط سيجما (δ): □ تنتج عن التداخل الجانبي لفلكين ذريين □ تنتج عن التداخل المحوري لفلكين ذريين 8. الرابطة بين ذرتي الأكسجين في الجزيء (Ο): □ تساهمية أحادية من النوع سيجما (δ) □ تساهمية ثنائية من النوع سيجما (δ) 9. الروابط في الصيغة البنائية التالية (H-C ≡ C-H): □ أربعة روابط سيجما (δ) ورابطة باي (π)

(6)	التوجيه الفني العام للعلوم – بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) – 2024 / 2025	
	10. عدد التداخلات المحورية بين الأفلاك المختلفة في جزيء الكلوروفورم CHCl₃ يساوي أحد ما يلي : □ 4 □ 2	
	سؤال الخامس: علل لما يأتي تعليلاً علميا صحيحاً:	
	. لا يمكن أن تحتوي أحد الجزيئات على الرابطة باي فقط. 	1
	. الرابطة التساهمية سيجما أقوى من الرابطة التساهمية باي. 	.2
	. لا يمكن الاعتماد على نظرية رابطة التكافؤ لشرح تكوين الروابط في جزئ الميثان CH4. (6C)	.3 -
		- . 4
	$ m H_2C=CH_2$ الميثان $ m CH_4$ أقل نشاطاً من الإيثين $ m H_2C=CH_2$ بالإضافة. أو يتفاعل الميثان $ m CH_4$ بالإستبدال بينما يتفاعل الإيثين $ m CH_4$ بالإضافة.	- .5
	تحتوي بنية غاز الكلور (Cl - Cl) على رابطة تساهمية واحدة سيجما. (علما بأن 17Cl)	- 6 -
		- .7
	على رابطة تساهمية واحدة من النوع سيجما. (H - Cl) على رابطة تساهمية واحدة من النوع سيجما.	8
	9416 6 900	_

(7)	2025 / 2024	التوجيه الفني العام للعلوم – بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) –
	ىية باي.	و. تحتوي بنية جزيء غاز الأكسجين $\mathbf{O} = \mathbf{O}$) على رابطة تساهمية سيجما ورابطة تساهم
با <i>ي.</i> 	طتین تساهمیتین)1. تحتوي بنية جزيء غاز النيتروجين (N≡ N) على رابطة تساهمية واحدة سيجما وراب
		11. الرابطة سيجما δ يصعب كسرها في التفاعلات الكيميائية.
		12. الرابطة باي π يسهل كسرها في التفاعلات الكيميائية.
		لسؤال السادس: ماذا يحدث في كل من الحالات التالية 1- تداخل فلكين ذربين رأسا لرأس على طول المحور الذي يصل بين نواتي الذرتين.
		2- تداخل فلكين ذربين جنبا إلى جنب عندما يكون محورا الفلكين متوازبين.
		_
1 CH ₃ -0	2 3 CH ₂ -CH ₃	1 2 3 وجه المقارنة CH ₃ -C ≡ CH
	•	نوع التداخل في ذرة الكربون (2)
		نوع الروابط التساهمية التي تكونها ذرة الكربون (1)
		عدد الروابط التساهمية سيجما في الجزيء
		عدد الروابط التساهمية باي في الجزيء
		محموة كاللوس

ب- علما أن H, 17Cl, 8O, 7N) أكمل الجدول التالي:

$N \equiv N$	O = O	Cl – Cl	H- Cl	الصيغة التركيبية وجه المقارنة
				نوع التداخل بين الأفلاك
				(محوري-جانبي-محوري وجانبي)
				رموز فلكي التداخل
				نوع الرابطة التساهمية
				(سيجما-باي - سيجما وباي)
				عدد الروابط التساهمية سيجما
				عدد الروابط التساهمية باي

ج - أكمل الجدول التالي حسب المطلوب:

البنزين	غاز الإيثاين	غاز الإيثين	غاز الميثان	وجه المقارنة
H C C H	Н-С≡С-Н	H H	H—C—H H	الصيغة التركيبية
				عدد الروابط 6 في الجزيء
	4			عدد الروابط π في الجزيء

د - أكمل الجدول التالي حسب المطلوب:

$H \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow H$ $\begin{vmatrix} 3 & 2 & 1 \\ H & 1 & 1 \end{vmatrix}$	$\begin{array}{c} H \\ H \\ C \\ H \end{array}$	وجه المقارنة
4		عدد الروابط 8 في الجزيء
TOU	J 94/16 0	عدد الروابط π في الجزيء

ه – أكمل الجدول التالي حسب المطلوب:

1 2	1 2	
Н-С≡С-Н	CH ₃ -C-O-H	وجه المقارنة
	· ·	عدد الروابط باي π لذرة الكربون رقم (1)
		عدد التداخلات المحورية في المركب

نظرية الأفلاك الجزيئية	نظرية رابطة التكافؤ	وجه المقارنة
		مكان وجود زوج الكترونات الرابطة
		مكان وجود النواتين المترابطتين

الرابطة باي	الرابطة سيجما	وجه المقارنة
		نوع تداخل الأفلاك
		طول الرابطة وقوتها
		محور التداخل

1 2 3 CH ₃ -CH ₂ -CH ₃	$1 2 3$ $CH_3-C \equiv CH$	وجه المقارنة
		نوع التداخل بين ذرتي الكربون (2-3)
		نوع الروابط التساهمية التي تكونها ذرة
		الكربون (3)

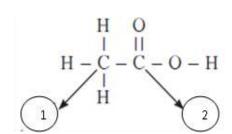
CH ≡ CH	$CH_2 = CH_2$	وجه المقارنة
		عدد الروابط سيجما في الجزيء
	17.1	عدد الروابط باي في الجزيء

السؤال الثامن : اكمل حسب المطلوب في الاسئلة التالية:

أولاً: الشكل المقابل يمثل الصيغة البنائية لمركب عضوي

<u> والمطلوب : –</u>

$$\delta$$
 عدد الروابط سيجما δ في الجزيء يساوي ------

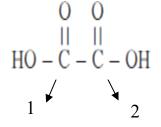

-2 عدد الروابط باي π في الجزيء يساوي ------

 $\mathbf{CH_3 - C} \equiv \mathbf{C - CH_3}$ 1 2

ثانياً: ادرس الصيغة الكيميائية البنائية التالية وهي لمركب حمض الأسيتيك المطلوب:

. عدد الروابط التساهمية (δ) في الجزيء يساوي ----- رابطة

2- عدد الروابط التساهمية (π) في الجزيء يساوي ----- رابطة.

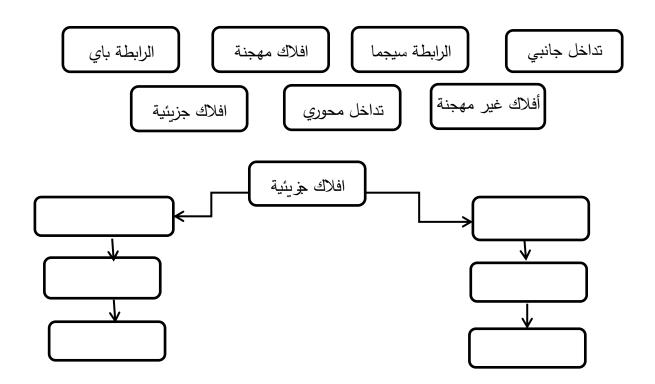


ثالثاً: من الشكل المقابل والذي يمثل الصيغة البنائية لحمض الاكساليك (C2H2O4)

والمطلوب:

1 - عدد الروابط سيجما في الجزئ هو ------

2 – عدد الروابط باي هو : -------



السؤال التاسع

1- أكمل المخطط الفارغ مستعينا بالمفاهيم العلمية الموجودة أمامك بوضعها في المربع المناسب لتحقق خريطة المفاهيم :

السؤال العاشر

ضع خطاً تحت الجمل أو الرموز التي لها صلة بالعبارة الرئيسة في الجدول التالي: .

1-الرابطة باي:

π	تداخل محوري	الرابطة في جزيء H ₂
الرابطة التساهمية الأحادية	δ	توجد في الرابطة التساهمية الثنائية
توجد في الرابطة التساهمية الثلاثية	رابطة سهلة الكسر	تداخل جانبي

الوحدة الأولى الإلكترونـات في الذرة

(13)

الدرس 2-1 الأفلاك المجنة

من العبارات التالية:	15 4 10 13 0	م المطلح العلمالة	يد القميريد الإسم أ	الدرخلل الأمل اكتررين
المن المنطاز الما المعالمية:	ای ایدال خدیه هل	ة الكناكلاج الأناديدي الد	ين الشوانسان الانسور ا	الأنتوال إقول: الحسب للأ

			1. عملية يتم فيها اندماج أفلاك ذرية مختلفة في الشكل والطاقة والاتجاه وينتج
()	عنها أفلاك جديدة تتماثل في الشكل والطاقة.
()	${f p}$ نوع من أنواع التهجين يتم فيها دمج فلك واحد ${f s}$ مع ثلاثة أفلاك ${f p}$
			أربعة أفلاك مهجنة.
()	3. نوع من أنواع التهجين يتم فيها دمج فلك واحد s مع فلكين p لتكوين ثلاثة
			أفلاك مهجنة.
()	4. نوع من أنواع التهجين يتم فيها دمج فلك واحد s مع فلك واحد p لتكوين
			فلكين مهجنين ويبعد كل فلك مهجن عن الآخر بزاوية <u>180</u> 0.
()	 5. مركب عضوي يعتبر أصل المركبات الأروماتية وصيغته الجزيئية C₆H₆ .
		دة مكلمة · خطأ ، بين	سؤال الثاني: اكتب كلمة ﴿ صحيحة ﴾ بين القوسين المقابلين للعبارة الصحيح
سين	القور	(سوری (عصدی: رحصب عصب (عصیصه) جین (هوسین (هاجین عصب ره (عصیت
سين	<u> 1921)</u>		4
<u>سین</u>			سورن العبارة الخطأ في كل مما يلي: قابلين للعبارة الخطأ في كل مما يلي:
<u>سين</u> (ابھور		ق <mark>ابلين للعبارة الخطأ في كل مما يلي:</mark> $C=CH_2$ بين ذرتي الكربون في جزيء الإيثين π) بين ذرتي الكربون في جزيء الإيثين
<u>دین</u> (الحود		ق <mark>ابلين للعبارة الخطأ في كل مما يلي:</mark> $[\alpha]$ بين ذرتي الكربون في جزيء الإيثين $[\alpha]$ $[\alpha]$ $[\alpha]$ المهجنين. $[\alpha]$
(()		ق <mark>ابلين للعبارة الخطأ في كل مما يلي:</mark> $C=CH_2$ بين ذرتي الكربون في جزيء الإيثين π) بين ذرتي الكربون في جزيء الإيثين
(()	H) من تداخل فلكي	ق <mark>ابلين للعبارة الخطأ في كل مما يلي:</mark> $[\alpha]$ بين ذرتي الكربون في جزيء الإيثين $[\alpha]$ $[\alpha]$ $[\alpha]$ المهجنين. $[\alpha]$
(()	H) من تداخل فلكي	قابلين للعبارة الخطأ في كل مما يلي: (π) بين ذرتي الكربون في جزيء الإيثين (π) (π) (π) المهجنين. (π) المهجنين. (π) على الحلقة. (π) على الحلقة. (π)
((()	H) من تداخل فلكي شكل والطاقة كي	قابلين للعبارة الخطأ في كل مما يلي: 1. تتكون الرابطة باي (π) بين ذرتي الكربون في جزيء الإيثين (π) و2C= CH ₂ المهجنين. 2. تتوزع ذرات الهيدروجين في جزيء البنزين توزيعاً متكافئاً على الحلقة. 3. تهجين الأفلاك هي عملية يتم فيها اندماج أفلاك تحت مستويات مختلفة في ال
((()	H) من تداخل فلكي شكل والطاقة كي كة في عملية	قابلين للعبارة الخطأ في كل مما يلي: 1. تتكون الرابطة باي (π) بين ذرتي الكربون في جزيء الإيثين (π) و2C= CH ₂ المهجنين. 2. تتوزع ذرات الهيدروجين في جزيء البنزين توزيعاً متكافئاً على الحلقة. 3. تهجين الأفلاك هي عملية يتم فيها اندماج أفلاك تحت مستويات مختلفة في التنج أفلاكاً جديدة تتماثل في الشكل والطاقة. 4. عدد الأفلاك الذرية المهجنة المتكونة يكون مساوياً لعدد الافلاك الذرية المشارة التهجين.
((()))	H) من تداخل فلكي شكل والطاقة كي كة في عملية	قابلين للعبارة الخطأ في كل مما يلي: 1. تتكون الرابطة باي (π) بين ذرتي الكربون في جزيء الإيثين (π) sp² المهجنين. 2. تتوزع ذرات الهيدروجين في جزيء البنزين توزيعاً متكافئاً على الحلقة. 3. تهجين الأفلاك هي عملية يتم فيها اندماج أفلاك تحت مستويات مختلفة في الاتنج أفلاكاً جديدة تتماثل في الشكل والطاقة. 4. عدد الأفلاك الذرية المهجنة المتكونة يكون مساوياً لعدد الافلاك الذرية المشارة التهجين. 5. عندما يتم تهجين ثلاثة أفلاك ذرية من نوع p مع فلك ذري واحد من نوع s تت
((()))	H) من تداخل فلكي شكل والطاقة كي كة في عملية	قابلين للعبارة الخطأ في كل مما يلي: 1. تتكون الرابطة باي (π) بين ذرتي الكربون في جزيء الإيثين (π) وp² المهجنين. 2. تتوزع ذرات الهيدروجين في جزيء البنزين توزيعاً متكافئاً على الحلقة. 3. تهجين الأفلاك هي عملية يتم فيها اندماج أفلاك تحت مستويات مختلفة في الاتتج أفلاكاً جديدة تتماثل في الشكل والطاقة. 4. عدد الأفلاك الذرية المهجنة المتكونة يكون مساوياً لعدد الافلاك الذرية المشارة التهجين. 5. عندما يتم تهجين ثلاثة أفلاك ذرية من نوع p مع فلك ذري واحد من نوع s تتكم مهجنة من النوع (sp³).
((())))	H) من تداخل فلكي شكل والطاقة كي كة في عملية كون أربعة أفلاك	قابلين للعبارة الخطأ في كل مما يلي: 1. تتكون الرابطة باي (π) بين ذرتي الكربون في جزيء الإيثين (π) يو المهجنين. 2. تتوزع ذرات الهيدروجين في جزيء البنزين توزيعاً متكافئاً على الحلقة. 3. تهجين الأفلاك هي عملية يتم فيها اندماج أفلاك تحت مستويات مختلفة في التنج أفلاكاً جديدة تتماثل في الشكل والطاقة. 4. عدد الأفلاك الذرية المهجنة المتكونة يكون مساوياً لعدد الافلاك الذرية المشارة التهجين. 5. عندما يتم تهجين ثلاثة أفلاك ذرية من نوع p مع فلك ذري واحد من نوع s تتامهجنة من النوع (sp²).
((()))))	H) من تداخل فلكي لشكل والطاقة كي كن عملية كون أربعة أفلاك لا تنائية.	قابلين للعبارة الخطأ في كل مما يلي: 1. تتكون الرابطة باي (π) بين ذرتي الكربون في جزيء الإيثين (π) وp² المهجنين. 2. تتوزع ذرات الهيدروجين في جزيء البنزين توزيعاً متكافئاً على الحلقة. 3. تهجين الأفلاك هي عملية يتم فيها اندماج أفلاك تحت مستويات مختلفة في الاتتج أفلاكاً جديدة تتماثل في الشكل والطاقة. 4. عدد الأفلاك الذرية المهجنة المتكونة يكون مساوياً لعدد الافلاك الذرية المشارة التهجين. 5. عندما يتم تهجين ثلاثة أفلاك ذرية من نوع p مع فلك ذري واحد من نوع s تتكم مهجنة من النوع (sp³).

(1	4)	التوجيه الفني العام للعلوم – بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) – 2024 / 2025
,	`	9. إذا كان نوع التهجين في ذرة الكربون من النوع sp، فإن هذه الذرة ترتبط مع ذرة الكربون المجاورة
()	لها في هذا الجزيء برابطة (δ) ورابطتين (π) .
()	. يساوي ستة روابط δ) في جزيء البنزين (C_6H_6 أو C_6H_6) يساوي ستة روابط .
()	البنزين ($^{\circ}_{6}$) يساوي ستة روابط . 11.عدد الروابط سيجما ($^{\circ}_{6}$) بين ذرات الكربون في جزيء البنزين
()	${ m C_6H_6}$) يكون من النوع (${ m sp}^3$).
		السؤال الثالث: أكمل الفراغات في الجمل التالية بما يناسبها علمياً:
		1- عند اندماج فلكين مختلفين عادة (p, s) يتكون فلك جديد يسمى
		$$ التهجين الذي تستخدمه ذرتي الكربون في جزيء الإيثان ($\mathrm{H_{3}C-CH_{3}}$) ، يكون من النوع
	نهذا	نان التهجين لكل ذرة كربون في جزيء الإيثاين ($\mathrm{C}_2\mathrm{H}_2$) من النوع (sp) هان الشكل الفراغي -3
		الجزيء يكون
	ما عدد	4- عدد الأفلاك المهجنة في ذرة الكربون الواحدة في الجزيء $\mathrm{CH}_2=\mathrm{CH}_2$ ، تساوي $$ بين
		الأفلاك غير المهجنة لذرة الكربون في الجزيء نفسه تساوي
		-5 عدد الأفلاك المهجنة في التهجين من نوع (sp^3) يساوي
	- وعدد	$$ إذا كان تهجين ذرة الكربون (sp^2) ، فإن عدد الأفلاك المهجنة في هذه الذرة يساوي $$
		الأفلاك غير المهجنة فيها يساوي
	ζ	7- عدد الروابط سيجما في جزيء البنزين [] يساوي وعدد الروابط باي فيه يساوي
		ونوع التهجين لكل ذرة كربون فيه هو
	اي	ا الروابط التساهمية سيجما في جزيء الإيثاين ($H-C\equiv C-H$) يساوي $\frac{3}{2}$ بينما عدد الروابط با
		في الجزيء نفسه يساوي <u>2</u> .
		${ m cp}^3$ يساوي ${ m cp}^3$ عدد الأفلاك المهجنة في التهجين ${ m cp}^3$) يساوي
ä	أير المهجن	المهجنة في التهجين (${ m sp}^2$) يساوي ${ m csp}^2$ عدد الأفلاك المهجنة في التهجين (${ m sp}^2$
		يساوي
Ž	بر المهجنا	11-عدد الأفلاك المهجنة في التهجين (sp) يساوي وعدد الأفلاك غي
		يساوي يساوي
<u>.</u> -		12- رموز الافلاك المتداخلة بين ذرتي الكربون لتكوين الرابطة سيجما في جزئ الإيثين C2H4 هي
		13- رموز الافلاك المتداخلة بين ذرتي الكربون لتكوين الرابطة باي في جزئ الإيثين C2H4 هي
_		-14 رموز الإفلاك المتداخلة بين ذرة الكربون وذرة الهيدروجين في جزئ الإيثين C_2 هي -14
-		15- رموز الافلاك المتداخلة بين ذرتي الكربون لتكوين الرابطة سيجما في جزئ الإيثاين C2H2 هي
		-16 رموز الافلاك المتداخلة بين ذرتي الكربون لتكوين الروابط باي في جزئ الإيثاين ${ m C}_2{ m H}_2$ هي -16
		اوا
_		17- رموز الافلاك المتداخلة بين ذرة الكربون وذرة الهيدروجين في جزئ الإيثاين C2H2 هي

السؤال الرابع: اختر الإجابة الصحيحة لكل من العبارات التالية وضع علامة $(\!\sqrt{})$ في المربع المقابل لها:

، C ₂ H ₂ هي:	1. قيمة الزاوية بين الأفلاك المهجنة في جزئ الإيثاين
109.5 □	104.5 □
180 □	120 🗆
س الذرة تساوي أحد ما يلي :	2. قيمة الزاوية بين فلكين مهجنين (sp - sp) لنف
109.5 □	104.5 □
180 □	120 🗆
ن عدد الأفلاك المهجنة يساوي أحد ما يلي:	3. اذا كان نوع التهجين في الذرة المركزية (sp) فإر
2 🗆	1 🗆
4 □	3 □
مع فلكين (p) يساوي أحد ما يلي:	4. عدد الأفلاك المهجنة الناتجة من تهجين فلك (s)
2 □	1 🗆
4 □	3 □
(CH3-CH2-CH3) فإن أحد ما يلي صحيح :	5. طبقا للمركبين التاليين: (CH ₃ -CH = CH ₂),
${ m sp}^3$ تهجین ذرات الکربون فی المرکبین من نوع \Box	 عدد الروابط سيجما متساو في المركبين
	ا حد ہروہ سیب حدو کی اعربین
	 □ عدد الروابط باي متساو في المركبين
يتفاعل بالإضافة CH₃-CH = CH₂ المركب □	
يتفاعل بالإضافة CH₃-CH = CH₂ المركب □	ت عدد الروابط باي متساو في المركبين 🔲
يتفاعل بالإضافة CH₃-CH = CH₂ المركب □	ت عدد الروابط باي متساو في المركبين 🔲
المركب CH ₃ -CH = CH ₂ يتفاعل بالإضافة CH ₃ -CH = CH ₂ يتفاعل بالإضافة (p) مع فلكين (p) ، يساوي أحد ما يلي : 2 □ 4 □	□ عدد الروابط باي متساو في المركبين 6. عدد الأفلاك المهجنة الناتجة عن تهجين فلك (3 □
المركب CH ₃ -CH = CH ₂ يتفاعل بالإضافة CH ₃ -CH = CH ₂ يتفاعل بالإضافة (p) مع فلكين (p) ، يساوي أحد ما يلي : 2 □ 4 □	□ عدد الروابط باي متساو في المركبين 6. عدد الأفلاك المهجنة الناتجة عن تهجين فلك (و □ □ □ □ □ □ □ □
المركب CH ₃ -CH = CH ₂ يتفاعل بالإضافة (p) مع فلكين (p) ، يساوي أحد ما يلي : 2 □ 4 □ ين (p) ننفس الذرة يسمى أحد يلي :	□ عدد الروابط باي متساو في المركبين 6. عدد الأفلاك المهجنة الناتجة عن تهجين فلك (3 □ 1 □ 3 □ 3 □ 7. الفلك الناتج من اندماج فلك (3) مع فلكين ذرب
المركب CH ₃ -CH = CH ₂ يتفاعل بالإضافة (p) مع فلكين (p) ، يساوي أحد ما يلي : 2 □ 4 □ ين (p) ننفس الذرة يسمى أحد يلي : □ الفلك sp	□ عدد الروابط باي متساو في المركبين 6. عدد الأفلاك المهجنة الناتجة عن تهجين فلك (ع المؤلاك المهجنة الناتجة عن تهجين فلك (ع الفلك (s) مع فلكين ذرب الفلك الناتج من اندماج فلك (s) مع فلكين ذرب الفلك الناتج من اندماج فلك (s)
المركب CH ₃ -CH = CH ₂ يتفاعل بالإضافة (p) مع فلكين (p) ، يساوي أحد ما يلي : 2 □ 4 □ ين (p) ننفس الذرة يسمى أحد يلي : □ الفلك sp	□ عدد الروابط باي متساو في المركبين 6. عدد الأفلاك المهجنة الناتجة عن تهجين فلك (و الله الله الله الله الله الناتج من اندماج فلك (s) مع فلكين ذرب الفلك الناتج من اندماج فلك (s) مع فلكين ذرب الفلك sp²
المركب CH ₃ -CH = CH ₂ يتفاعل بالإضافة (p) مع فلكين (p) ، يساوي أحد ما يلي : 2	□ عدد الروابط باي متساو في المركبين 6. عدد الأفلاك المهجنة الناتجة عن تهجين فلك (و ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا
المركب CH3-CH = CH₂ يتفاعل بالإضافة CH3-CH = CH₂ يتفاعل بالإضافة (p) مع فلكين (p) ، يساوي أحد ما يلي : 4 □ 4 □ 5p ينن (p) تنفس الذرة يسمى أحد يلي : 5p الفلك sp فإن الشكل الهندسي للجزيء هو أحد ما يلي : 5p مثلث مستوي معتوي مكعب	□ عدد الروابط باي متساو في المركبين 6. عدد الأفلاك المهجنة الناتجة عن تهجين فلك (و الله الله الله الله الناتج من اندماج فلك (و الله الناتج من اندماج فلك (و الله الفلك sp² الفلك \$
المركب CH3-CH = CH2 يتفاعل بالإضافة (p) ، يساوي أحد ما يلي : 2	عدد الروابط باي متساو في المركبين 6. عدد الأفلاك المهجنة الناتجة عن تهجين فلك (و المهجنة الناتجة عن تهجين فلك (و الفلك الناتج من اندماج فلك (s) مع فلكين ذرب الفلك الناتج من اندماج فلك (s) مع فلكين ذرب الفلك sp² الفلك p² الفلك sp² الفلك p² الفلك sp² الفلك 9² و الفلك عبريء من نوع (الفلك عبريء من نوع (المهجين المسطوح السطوح السطوح السطوح المهجين المدرة كربون في جزيء من نوع (و إذا كان التهجين لذرة كربون في جزيء من نوع (و إذا كان التهجين لذرة كربون في جزيء من نوع (و إذا كان التهجين لذرة كربون في جزيء من نوع (و إذا كان التهجين لذرة كربون في جزيء من نوع (و إذا كان التهجين لذرة كربون في جزيء من نوع (و إذا كان التهجين لذرة كربون في جزيء من نوع (و إذا كان التهجين لذرة كربون في جزيء من نوع (و الفلك النهجين لذرة كربون في جزيء من نوع (المهجن المهجين المؤلف المهجنة الم
المركب CH3-CH = CH₂ يتفاعل بالإضافة CH3-CH = CH₂ يتفاعل بالإضافة (p) مع فلكين (p) ، يساوي أحد ما يلي : 4 □ 4 □ 5p ينن (p) تنفس الذرة يسمى أحد يلي : 5p الفلك sp فإن الشكل الهندسي للجزيء هو أحد ما يلي : 5p مثلث مستوي معتوي مكعب	□ عدد الروابط باي متساو في المركبين 6. عدد الأفلاك المهجنة الناتجة عن تهجين فلك (و الله الله الله الله الناتج من اندماج فلك (و الله الناتج من اندماج فلك (و الله الفلك sp² الفلك \$

ر العلمي - (الجزء الأول) - 2024 / 2025	الكيمياء - الصف الحادي عش	التوجيه الفني العام للعلوم - بنك أسئلة
فإن الشكل الهندسي للجزيء هو أحد ما يلي :	جز <i>ي</i> ء من نوع (sp ³)	10. إذا كان التهجين لذرة كربون في
مثلث مستوي		□ رباعي السطوح
مكعب		🗆 خطي
11	NI 2001	3 \ _ • • • • • • • • • • • • • • • • • •
ك المهجنه تساوي احد مايلي : °109.5	,	sp^3) إذا كان التهجين من النوع \square 180 \square
90°		130° □
"	·	sp^2) إذا كان التهجين من النوع sp^2
109.5°		180° □
90°	П	120° □
و المهجنة تساوي أحد مايلي :) فإن الزوايا بين الافلاك	sp) إذا كان التهجين من النوع (sp
109.5°		180° □
90°		120° □
	sp تستطيع تكوين:	14. ذرة الكربون المهجنة من النوع ³
أربع روابط سيجما.		☐ ثلاث روابط سيجما ورابطة بأي
رابطتين سيجما ورابطتبن باي .		 ثلاث روابط باي ورابطة سيجما
		2 - 11 - 71 - 11 - 21 - 17
	•	15. ذرة الكربون المهجنة من النوع ²
أربع روابط سيجما.		☐ ثلاث روابط سيجما ورابطة باي
رابطتين سيجما ورابطتبن با <i>ي</i> .		☐ ثلاث روابط با <i>ي</i> ورابطة سيجما
	s] تستطیع تکوین:	16. ذرة الكربون المهجنة من النوع p
أربع روابط سيجما.		☐ ثلاث روابط سيجما ورابطة با <i>ي</i>
رابطتين سيجما ورابطتبن باي.		☐ ثلاث روابط با <i>ي</i> ورابطة سيجما
♠ ∧	, A A	
: (sp³) نوع	الكربون فيها يكون من	17. أحد المركبات التالية، تهجين ذرة
$H-C \equiv C-H$		$O = C = O \square$
$H_2C = CH_2$		CH₄ □
ن مهجنة من النوع 2 sp:	یء فیها علی ذرات کریو	18. أحد المركبات التالية يحتوي الجز
CH ₃ CH ₂ CH ₃	The state of the s	H-C≡C-H □
CH ₃ CH ₃	月 🕶 📆	$CH_3CH = CH_2 \square$
	() 0 5	7
AA.		

ي عشر العلمي ـ (الجزء الأول) <u>– 2024 / 2025</u>	منس التوجيه الفني العام للعلوم - بنك أسئلة الكيمياء - الصف الحاد
كربون مهجنة من النوع sp:	19. أحد المركبات التالية يحتوي الجزيء فيها على ذرات
CH ₃ CH ₂ CH ₃ □	$H-C \equiv C-H \square$
CH ₃ CH ₃ □	$CH_3CH = CH_2 \square$
en³ caill in āin an inn	20. أحد المركبات التالية يحتوي الجزيء فيها على ذرة ك
بون مهجنه من اعوج ۱۶۰. □ CH ₃ CH ₂ CH ₃	H-C ≡ C-H □
$CH_2=CH_2$ \square	$CH_2 = C = CH_2 \square$
: CH	21. أحد ما يلي لا يعتبر من خصائص مركب الميثان 4
□ تشير الأفلاك المهجنة لقمم رباعي السطوح	${f sp}^3$ نوع التهجين في ذرة الكربون $lacksquare$
\square الزاوية بين الافلاك المهجنة $^\circ$ 109.5 $^\circ$	🗖 عدد الأفلاك المهجنة يساوي 3
<u> </u>	22. الرابطة سيجما بين ذرتي الكربون في جزيء الإيثاين
s - sp □	$sp^2 - sp^2 \square$
$\mathbf{p} - \mathbf{p}$	sp - sp □
نيء الإيثاين H-C≡C-H تنتج من تداخل فلكين	23. الرابطة سيجما بين ذرتي الكربون والهيدر وجين في ح
	مما يلي:
sp - s □	$sp^2 - sp^2 \square$
	sp sp =
p - p □	sp - sp □
<u> </u>	
p - p □	sp - sp □
p - p □	sp - sp □ السؤال الخامس: علل لما يأتي تعليلاً علميا صحيحاً:
p - p □ * sp	sp - sp □ السؤال الخامس: علل لما يأتي تعليلاً علميا صحيحاً:
p - p □ * sp	sp - sp □ السؤال الخامس: علل لما يأتي تعليلاً علميا صحيحاً: 1. التهجين لذرات الكربون في غاز الميثان CH4 من النوع أ
p - p □	sp - sp □ السؤال الخامس: علل لما يأتي تعليلاً علميا صحيحاً: 1. التهجين لذرات الكربون في غاز الميثان CH4 من النوع و كان النوع و CH2 = CH2 يكون عان الإيثين CH2 = CH2 يكون
p - p □	sp - sp □ السؤال الخامس: علل لما يأتي تعليلاً علميا صحيحاً: 1. التهجين لذرات الكربون في غاز الميثان CH4 من النوع أ
p - p □	sp - sp □ السؤال الخامس: علل لما يأتي تعليلاً علميا صحيحاً: 1. التهجين لذرات الكربون في غاز الميثان CH4 من النوع و كان النوع و CH2 = CH2 يكون عان الإيثين CH2 = CH2 يكون
p - p □	sp - sp □ السؤال الخامس: علل لما يأتي تعليلاً علميا صحيحاً: 1. التهجين لذرات الكربون في غاز الميثان CH4 من النوع و كان النوع و CH2 = CH2 يكون عان الإيثين CH2 = CH2 يكون

(18)	التوجيه الفني العام للعلوم – بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) – 2024 / 2025
	حلقة البنزين ($\mathrm{C_6H_6}$) قوية ومتماسكة.
	السؤال السادس: ماذا يحدث في كل من الحالات التالية
	اندماج فلك ذري واحد s مع ثلاثة أفلاك p في ذرة الكربون في مركب الميثان. -1
	2- اندماج فلك ذري واحد s مع فلكين p في ذرة الكربون في مركب الإيثين.
	اندماج فلك ذري واحد s مع فلك واحد p في ذرة الكربون في مركب الإيثاين. -3

السؤال السابع: أكمل الجداول التالية حسب المطلوب:

اً -

1 2 3 CH ₃ -CH ₂ -CH ₃	$1 2 3$ $CH_3-C \equiv CH$	وجه المقارنة
		نوع التداخل في ذرة الكربون (2)
		نوع الروابط التساهمية التي تكونها ذرة الكربون (1)
		عدد الروابط التساهمية سيجما في الجزيء
		عدد الروابط التساهمية باي في الجزيء معدد الروابط التساهمية باي في الجزيء
	A4 (1	نوع التهجين في ذرة الكربون رقم (2)

(19)

ب - أكمل الجدول التالي حسب المطلوب:

البنزين	غاز الإيثاين	غاز الإيثين	غاز الميثان	وجه المقارنة
H C C H	Н-С ≡ С-Н	H C=C H	H 	الصيغة التركيبية
				عدد الروابط 6 في الجزيء
				عدد الروابط π في الجزيء
				التهجين في ذرات كربون

ج - أكمل الجدول التالي حسب المطلوب:

$H \xrightarrow{\begin{array}{c} H \\ \\ C C C C H \\ & 1 \end{array}}$	$H \longrightarrow 0 \longrightarrow C \longrightarrow C$	وجه المقارنة
		عدد الروابط 8 في الجزيء
		عدد الروابط π في الجزيء
		نوع التهجين في ذرة الكربون رقم 1
		نوع التهجين في ذرة الكربون رقم 2
		نوع التهجين في ذرة الكربون رقم 3
		رموز الأفلاك المتداخلة في الرابطة
	76	بين ذرتي الكربون (1) و (2)
4		عدد الأفلاك غير المهجنة حول ذرة الكربون رقم (1)

د - أكمل الجدول التالي حسب المطلوب:

$\mathbf{H} \cdot \mathbf{C} \equiv \mathbf{C} \cdot \mathbf{H}$	² 1 CH ₃ - C- O -H	وجه المقارنة
		عدد الروابط باي π لذرة الكربون رقم (1)
		عدد التداخلات المحورية في المركب
		نوع التهجين لذرة الكربون رقم (2)
		عدد الأفلاك غير المهجنة
		في ذرة الكربون رقم (2)

C ₂ H ₂	C ₂ H ₄	وجه المقارنة
		نوع التهجين
		عدد الأفلاك المهجنة في كل ذرة كربون

Cl ₂	CH ₄	وجه المقارنة
		عدد الروابط سيجما في الجزيء
		نوع التداخل
		(بين أفلاك مهجنة / بين أفلاك غير مهجنة)

sp	sp ²	sp ³	نوع التهجين
	4		عدد الأفلاك المتداخلة
			نوع الأفلاك المتداخلة
	4		(مهجنة عير مهجنة مهجنة وغير مهجنة)
	,		نوع التداخل بين الذرات
			الشكل الهندسي الأفلاك المهجنة
		11/1	الزوايا بين الأفلاك المهجنة

(21)التوجيه الفنى العام للعلوم - بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) - 2024 / 2025

/	31
//3	200
160	101
1977	
()	- 12°
131	13/
100	///
V	100
_	CV >

CH ≡ CH	$CH_2 = CH_2$	وجه المقارنة
		عدد الروابط سيجما في الجزيء
		عدد الروابط باي في الجزيء
		نوع التهجين في كل ذرة كربون

السؤال الثامن : اكمل حسب المطلوب في الاسئلة التالية:

$$CH_3 - C \equiv C - CH_3$$
1 2

H O

H - C - C - O - H

أولاً: الشكل المقابل يمثل الصيغة البنائية لمركب عضوي

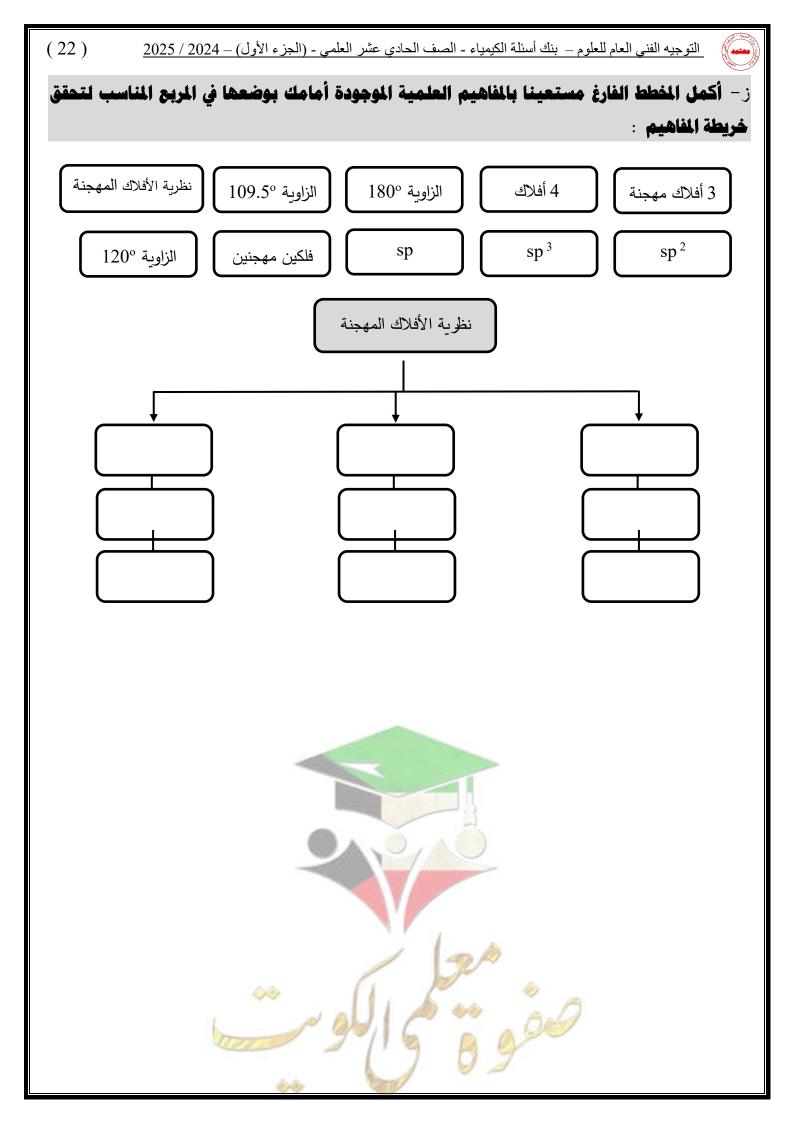
والمطلوب: -

- نوع التهجين في ذرة الكربون رقم (1) هو ------
- نوع التهجين في ذرة الكربون رقم (2) هو -------4
- عدد الروابط سيجما δ في الجزيء يساوي -------5
 - عدد الروابط باي π في الجزيء يساوي -------6

ثانياً: ادرس الصيغة الكيميائية البنائية التالية وهي لمركب حمض الأسيتيك

<u>المطلوب :</u>

- التساهمية (δ) في الجزيء يساوي ----- رابطة .
- -2 عدد الروابط التساهمية (π) في الجزيء يساوي ----- رابطة.
 - 3- نوع التهجين في ذرة الكربون رقم 1
 - 4- نوع التهجين في ذرة الكربون رقم 2 ---
- 5 عدد الأفلاك المهجنة في ذرة الكربون رقم (1) هو : -------
- عدد الأفلاك المهجنة في ذرة الكربون رقم (2) هو 2 ------


ثالثاً: من الشكل المقابل والذي يمثل الصيغة البنائية لحمض الاكساليك (C2H2O4)

والمطلوب:

- 0 0 $HO - \ddot{C} - \ddot{C} - OH$
- 2 نوع التهجين لذرة الكربون رقم (2) هو : ----3 - عدد الروابط سيجما في الجزئ هو -----

1 – نوع التهجين لذرة الكربون رقم (1) هو : ---

4 – عدد الروابط باي هو : –––

الوحده الثانية الحاليل

الفصل الأول الماليل المائية المتجانسة وغير المتجانسة

التوجيه الفني العام للعلوم – بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) – 2024 / 2025
--

		۽ قوي	-1) الماء كمذيب	درس (1	
: ä	التالي	ذى تدل عليه كل من العبارات	مطلح العلمي اا	لاول : اكتب بين القوسين الاسم او الا	السؤال ا
		ى ويغط <i>ي</i> ثلاثة	الحياة على الأرض	كِب مميز وفريد يعتبر أساس جميع صور	1. مر
()		أرباع الكرة الأرضية.	
()		إبطة التي تجمع جزيئات الماء.	2. الر
()		إبطة التي تربط الذرات في جزئ الماء	3. الر
		تِبط مع بلورات	بعض الأملاح وتر	ئِيات الماء المتحدة بقوة كبيرة مع أيونات	4. جز
()		ملح المنفصلة من المحلول المائي.	مأا
	بين	لعبارة الصحيحة وكلمة ﴿ خطأ ﴾	توسين المقابلين ا	ثاني : اكتب كلمة (صحيحة) بين الأ	لسؤال الـٰ
		<u>:</u>	لاً في كل مما يلي	القوسين المقابلين للعبارة الخط	
)	قطبية.	ى تساهمية أحادية	إبط التي تربط الذرات في جزئ الماء تكور	1. الرو
)		إبط هيدروجينية.	جمع جزيئات الماء مع بعضها البعض برو	2. تت
)	. 104.5°	, جزئ الماء تساوي	إيا بين روابط الهيدروجين والأكسجين في	3. الزو
)	لتركيب عند نفس الظروف بسبب	المشابهة له في ا	غط البخاري للماء منخفض عن المركبات	4. الض
				مع جزيئاته بروابط هيدروجينية.	تج
)	يدروجينية.	جزيئاته بروابط ه	ء له قدرة عالية على الإذابة بسبب تجمع	5. الما
)	ي تلغي بعضها البعض.	متساوية ولذلك فهم	ية الروابط التساهمية بين جزيئات الماء،	6. قطب
:	بل لها	ة وضع علامة $\langle extstyle ar{\psi} angle$ في المربع المقا	ن العبارات التالي	ثالث : اختر الإجابة الصحيحة لكل مر	لسؤال ال
				المركبات التالية له أعلى درجة غليان:	1. أحد
		H_2S		H ₂ O	
		H ₂ Te		H ₂ Se	
		هيدر وجينية:	ئات الماء بروابط،	ى الصفات التالية <u>لا تنتج</u> عن تجمع جزي	2. إحد
		ارتفاع درجة الغليان		ارتفاع حرارة التبخير	
		ارتفاع الضغط البخاري		ارتفاع قيمة قوة التوتر السطحي	
				ما يلي <u>لا</u> يعتبر من خواص الماء:	3. أحد
		مرکب قطبی	1616	تجمع جزيئاته بروابط تساهمية قطبية	
		قيمة ثابت العزل له عالية	77/16	نه شکل زاوي	
			K /	W	ш

مي - (الجزء الأول) – 2024 / 2025	. <i>ي</i> عشر العا	والتوجيه الفني العام للعلوم - بنك أسئلة الكيمياء - الصف الحاد
		4. تعود قدرة الماء العالية على الإذابة إلى أحد ما يلي:
ارتفاع درجة الغليان		ارتفاع حرارة التبخير □
القيمة العالية لثابت العزل		ارتفاع قيمة قوة التوتر السطحي
يلي:	ى أحد ما	5. الصيغة الكيميائية التالية (CuSO4.5H2O) تدل علم
محلول كبريتات النحاس II تركيزه M		☐ بلورات من كبريتات النحاس II
محلول كبريتات النحاس II		☐ كبريتات النحاس II المذابة في الماء
		السؤال الرابع: أكمل الفراغات في الجمل التالية بما ينا
		1 – الروابط بين الذرات في جزيء الماء (H2O) روابط
البخاري وارتفاع درجة الغليان والتوتر السطحي	م الضغط ا	2 - يعود السبب في الخواص الهامة للماء من مثل انخفاض
		إلى تجمع جزيئاته القطبية بروابط
		3 – نوع الرابطة بين (O-H) في جزيء الماء
H ₂ تساو <i>ي</i> H	الماء ()	4 - الزاوية بين ذرتي الهيدروجين وذرة الأكسجين في جزيء
		السؤال الخامس: علل (فسر) ما يلي:
، كبيرة	سية قطبية	1 – الرابطة التساهمية (H - O) في جزيء الماء لها خاص
ع) المار نفس القطيبة		2- جزيء الماء له خاصية قطبية على الرغم من أن الرابطة
<u></u>		ـــــــــــــــــــــــــــــــــــــ
	التركيب.	3- ارتفاع درجة غليان الماء عن المركبات المشابهة له في
	A	
		4 - الماء له قدرة عالية على الإذابة .
	الكو	5 6 900

(26)

لسؤال السادس: ماذا تتوقع أن يحدث في الحالات التالية مع التفسير :

ود الخاصية القطبية.	ئ الماء من حيث وجو	، لتكوين جزء	هيدروجين	مع درتي	الأكسجين	ارتباط درة	عند .
						ىدث:	الد
						سير:	التف
	ه في التركيب .	المشابهة ل	ة للمركبات	ء بالنسبأ	غليان الما	قدار درجة	2 لم
						ىدث:	الد
							* b1

الدرس (2-1) الماليل المائية

التالية :	ل من العبارات	ؤال الاول : اكتب بين القوسين الاسم او المصطلح العلمي الذى تدل عليه كا
()	1. مخاليط متجانسة وثابتة وتتكون من مادتين أو أكثر .
()	2. الوسط المذيب في المحلول.
()	3. الدقائق المذابة في المحلول.
()	4. عملية تحدث عندما يذوب المذاب وتتم إماهة الكاتيونات والأنيونات بالمذيب.
		5. المركبات التي توصل التيار الكهربائي في المحلول المائي أو في الحالة
()	المنصهرة.
		6. المركبات التي لا توصل التيار الكهربائي في المحلول المائي أو في الحالة
()	المنصهرة.
		7. أحد أنواع المحاليل الإلكتروليتية عند ذوبانه في الماء يتفكك جزئيا ويتواجد
()	جزء ضئيل منه على شكل أيونات.
		8. أحد أنواع المحاليل الإلكتروليتية عند ذوبانه في الماء يتفكك كاملا ويتواجد
()	جزء كبير جدا منه على شكل أيونات.
`	,	

(28)

السؤال الثاني : اكتب كلمة (صحيحة) بين القوسين المقابلين للعبارة الصحيحة وكلمة (خطأ) بين القوسين المقابلين للعبارة الخطأ في كل مما يلي:

()	1. يمكن فصل مكونات محلول كلوريد الصوديوم في الماء بوساطه ورقه الترشيح.
()	2. يمكن أن توجد المحاليل في الحالة الصلبة أو السائلة أو الغازية .
()	3. المحلول المتجانس يكون فيه المذيب في الحالة السائلة دائماً.
()	4. تعتبر المياه الغازية مثالا لمحلول غاز في سائل.
()	5. يعتبر الهيدروجين في البلاتين مثالا لمحلول صلب في غاز.
()	6. المذيبات القطبية يمكنها أن تذيب المركبات الأيونية والمركبات التساهمية القطبية.
()	7. جزيئات الماء في حركة مستمرة وذلك بسبب طاقتها الحركية.
()	8. يعتبر الماء من المذيبات القطبية بينما يعتبر البنزين من المذيبات الغير قطبية
()	9. عندما يذوب المركب الأيوني في الماء فإنه يتفكك الى أيونات.
()	10. يعتبر كبريتات الباريوم BaSO4 مركب أيوني لا يذوب في الماء لكن مصهوره يوصل
		التيار الكهربائي.
()	11. يذوب زيت الزيتون في البنزين بسبب قوى التجاذب بينهما.
()	12. محاليل أو مصاهير المركبات الأيونية تعتبر مركبات الكتروليتية.
()	13. عندما يذوب إلكتروليت قوي في الماء فإنه يتفكك كاملا ويوجد على شكل أيونات
		منفصلة في المحلول.
()	14. محاليل المركبات التساهمية غير القطبية تعتبر محاليل الكتروليتية.
()	15. غاز الأمونيا النقي يوصل التيار الكهربائي مثل محلول الأمونيا.
()	16. تختلف الإلكتروليتات في قوة توصيلها للتيار الكهربائي باختلاف درجة تفككها أو تأينها.
()	17. المركبات الأيونية يمكنها أن توصل التيار الكهربائي وهي في الحالة الصلبة.
()	18. جميع المركبات الإلكتروليتية جيده الت <mark>وصيل للتيار</mark> الكهربائي.
()	19. يعتبر محلول كلوريد الزئبق HgCl ₂ II الكتروليت ضعيف.
()	20. محلول الجلوكوز في الماء يوصل التيار الكهربائي.

(29)	مي ـ (الجزء الأول) – 2024 / 2025	ي عشر العا	التوجيه الفني العام للعلوم – بنك أسئلة الكيمياء - الصف الحادي	1
ها:	ة وضع علامة $\langle extstyle ar{ee} angle$ في المربع المقابل ا	ت التاليا	لثالث : اختر الإجابة الصحيحة لكل من العبارا،	السؤال ا
	<u>.</u>			
	أيونات المذاب تحيط بجزيئات الماء		جزيئات الماء تحيط بأيونات المذاب	
	تفاعل أيونات المذاب مع الماء .		بريات المذاب تبلر أيونات المذاب	
	علاص ايونات المداب مع الماء .		لبر ایوات العداب	
	عدا واحدا :	ما يلي ما	د ذوبان بلورة صلبة (مذاب) في الماء يحدث جميع	2. عذ
ذاب	تجاذب بين جزيئات الماء وايونات الم		انفصال الكاتيونات عن الأنيونات للبلورة الصلبة	
•	اصطدام جزيئات الماء بالبلورة		انفصال جزيئات الماء عن بعضها البعض	
	99		المصال بريات الماد في بصله البسل	
			جع ذوبان زبت الزيتون في البنزين إلى أحد ما يلي:	3.ير.
تيو نات	انفصال جزيئات الزيت الى أيونات وكم		إماهة جزيئات زيت الزيتون	
.	انعدام قوى التنافر بينهما.		ءً ق <i>وي</i> التجاذب بينهما	
			د محاليل المركبات التالية يعتبر الكتروليت قوي:	4. أح
	PbCl ₂		$C_6H_{12}O_6$	
	HBr		CH ₃ COOH	
	<u>. ا واحدا:</u>	کھرب <i>ی</i> <u>عد</u>	ميع المركبات التالية محاليلها المائية توصل التيار ال	5.جه
	الجلوكوز		کلورید الهیدروجین کلورید الهیدروجین	
	كلوريد الصوديوم		الأمونيا	
	حوت الموتيم			
	(1 15	1. 1 " 4144 444 *1.4 * 44 4 € 1 4 4	11 416 11
			لرابع: أكمل الفراغات في الجمل التالية بما ينا،	_
	التيار الكهربائي.		ع محاليل و مصاهير المركبات الأيونية	1- جمي
	ائي في حالته النقية.	ا الكور	الأمونياالت	اغان –2
	<i>ـــي عي حـــ</i>	,50 / 5 =		<i>J</i> = =
بربائي .	التيار الكؤ		رل كلوريد الهيدروجين (حمض الهيدروكلوريك)	3- محلو
•		A .	ال الحلوكون مثال لمحلول غير الكتروليتي لذلك	
ىائىر	التيار الكه	4 600	الحلوكوز مثال لمحلول غير الكتروليت لذلك	4- محله

6- إذا كانت قوى التجاذب بين أيونات البلورة لأي ملح أقوى من قوى التجاذب بين جزيئات الماء وهذه الأيونات، فإن

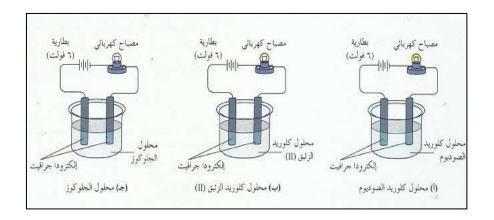
----- في الماء.

----- وحالة المذيب صلبة.

00

5- السبائك هي مثال لمحلول يكون فيه حالة المذاب -----

7-يذوب الإلكتروليت الضعيف في الماء ويتأين بدرجة -


هذا الملح

(30)	التوجيه الغني العام للعلوم – بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) – 2024 / 2025
	1- محلول الهيدروجين في البلاتين يوجد في حالة صلبة.
ـــــــــــــــــــــــــــــــــــــ	
التيار .	8- غاز كلوريد الهيدروجين HCl لا يوصل التيار الكهربائي في حالته النقية بينما محلوله المائي يوصل الن
	حقوق مح الكوس

(31)	التوجيه الفني العام للعلوم – بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) – 2024 / 2025
	السؤال السادس: ما المقصود:
	1− <u>عملية الإذابة:</u>
	t
	2 – المركبات الإلكترونيتية:
	6.1
	السؤال السابع: أجب عما يلي
خريطة	(أ) <mark>أكمل المخطط الفارغ مستعينا بالمفاهيم العلمية الموجودة أمامك بوضعها في المربع المناسب لتحقق</mark> المناهدية
	<u>المفاهيم :</u>
	محلوله يوصل التيار الكهربائي بدرجة عالية- كلوريد الزئبقHgCl2) II - كلورات البوتاسيوم (KClO3)
	- محلوله يوصل التيار الكهربائي بدرجة قليلة
	الإلكتروليتات وبرجة التفكك (أو التأين)
	الكتروليتات قوية
	1 2 1 C ** 200

ب- ادرس الشكل التالي ثم أجب عن الأسئلة التالية:

أكمل الجدول التالي حسب المطلوب:

المحلول (ج)	المحلول (ب)	المحلول (أ)	وجه المقارنة
			إضاءة المصباح عند غلق الدائرة
			(لا يضيء - ضعيفة - شديدة)
			نوع المحلول
			(الكتروليت قوي- الكتروليت ضعيف-غير الكتروليتي)
			عدد الأيونات المنفصلة في المحلول
			(لا يوجد – عالية – منخفضة)

	سبب:	ير الا	مع تعس	التاليه	الحالات	ل من	ت بي د	عادا يحدا	التامن : ﴿	السؤال
,	الاکأن،	å II	النئدة	1, 210,11	ن ۽ محام	an die	رسرطة	کھیں ائ <i>ی</i> تے	مرداح دائرة	اخداءة مو

	الحدث:
	التفسير:
 هربائية بسيطة عند وضع محلول الجلوكوز في الكأس.	1- لإضاءة مصباح دائرة كالحدث:
	ئتفسیر:
** (1)	9

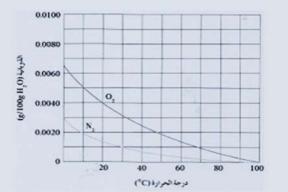
(33)

		الدرس (2-2) العوامل الموترة على الدوبانية في الماليل
الية:	بارات الت	سؤال الأول: اكتب بين القوسين الاسم أو المصطلح العلمي الذي تدل عليه كل من العب
		1- المحلول الذي يحتوي على أكبر كمية من المذاب في كمية معينة من المذيب عند
		درجة حرارة ثابتة.
		2- كتلة المادة التي تذوب في كمية معينة من المذيب عند درجة حرارة معينة لتكون
		محلولا مشبعا.
		3- الامتزاج الذي يحدث عندما يذوب سائلان كل منهما في الآخر مهما كانت الكمية
		4- الامتزاج الذي يحدث للسوائل شحيحة الذوبان كل منهما في الآخر.
		5- مزيج من سوائل لا يذوب أحدها في الأخر.
		6- المحلول الذي يحتوي على كمية من المذاب زائدة عن الكمية المسموح بها نظرياً
		والتي تكفي لتشبعه.
ين الق	ِ خطأ) ب	لسؤال الثاني : اكتب كلمة (صحيحة) بين القوسين المقابلين للعبارة الصحيحة وكلمة (
		المقابلين للعبارة الخطأ في كل مما يلي:
()	1- الامتزاج الكلي هو ذوبان سائلين في بعضهم البعض مهما كانت كميتهما
,)	2- عند مزج الماء والايثانول فإنهما يمتزجان امتزاجا كليا.
)	3- عند مزج الماء والزيت فإنهما لا يمتزجان.
	,	4- التغير في درجة الحرارة لا يؤثر على مقدار ذوبان المادة الصلبة في مذيب.
	,	ي عظم المواد الصلبة في السائل بارتفاع درجة الحرارة
)	
)	6- يزداد ذوبان الغاز في السائل بارتفاع درجة الحرارة.
)	7- تزداد ذوبانية الغاز في سائل كلما زاد الضغط المؤثر على سطح المحلول.
)	8- إنتاج سكر النبات والأمطار الاصطناعية يعدان من أحد تطبيقات المحاليل فوق المشبعة.
		9- يمكن تحويل المحلول غير المشبع الى محلول مشبع بإذابة كميات أخرى من المذاب عند
)	نفس درجة الحرارة .
		10- لمحلول المشبع يكون في حالة اتزان ديناميكي بين المحلول والمادة الصلبة غير المذابة
()	عند ثبات درجة الحرارة.

10 20

درجة الحرارة (℃) 40

الموم – بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) – 2024 / 2025	التوجيه الفني العام للع
فراغات في الجمل التالية بما يناسبها علمياً:	 السؤال الرابع: أكمل ال
صلب يقل حجم جسيماته ومساحة السطح المشترك بين	
	المذاب والمذيب مما يسرع
في الماء الساخن عنها في الماء البارد.	2- ذوبانية الغازات تكون
نوبانية الغاز في السائل.	3- عند رفع درجة الحرارة
ل كلما زاد الضغط الجزيئي على سطح المحلول.	4- ذوبانية الغاز في السائ
سر) ما يلي:	السؤال الخامس: علل (i
لريقة مثالية لإدابة مذاب موجود على شكل أحجار صغيرة أو كبيرة.	
 واد الصلبة بارتفاع درجة الحرارة.	
ى الصب بريع عرب العراره. 	
ي الماء بزيادة درجة الحرارة .	3- تقل ذوبانية الغازات فج
t.la. 11 = ta = 10 = 5° = 11 t.i * 11 i i 11 i 11 i 11 i i 1	
في الماء بزيادة الضغط الجزئي على سطح المحلول. 	نرداد دوبانیه انغارات
يده المصانع إلى الأنهار يؤثر سلباً على الحياة المائية بها	5- الماء الساخن الذي تع
ية عند ترك زجاجتها مفتوحة؟ 	6- يتغير طعم المياه الغاز
في بذر (شحن) السحب التي تحتوي على كتل من الهواء فوق المشبع ببخار الماء لتكوين	7- يستخدم يوديد الفضة
	الأمطار الاصطناعية.
94/6 0 0	


(36)	التوجيه الفني العام للعلوم – بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) – 2024 / 2025
	السؤال السادس: ما المقصود:
	1- المحلول المشبع:
	2- المحلول فوق المشبع:
	3- الذوبانية <u>:</u>
	السؤال السابع: ماذا تتوقع أن يحدث في الحالات التالية مع التفسير:
	1- إعادة الماء الساخن المستخدم في تبريد معدات المصانع إلى الأنهار مرة أخرى
	التوقع :
	<u>التفسير</u> :
	2- لطعم المشروب الغازي عند ترك زجاجته مفتوحة لفترة طويلة.
	التوقع :
	التفسير:
•	3- عند بذر السحب التي تحتوي على كتل من الهواء فوق المشبع ببخار الماء ببلورات من يوديد الفضة
	التوقع :
	التفسير:
	صفوة والكوس

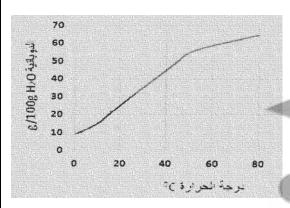
(37)

السؤال الثامن: مستعينا بالرسم البياني المقابل:

1- الذي يوضح ذوبانية غازي الأكسجين والنيتروجين باعتبارهما المكونين الأساسين للهواء الجوي عند درجات حرارة مختلفة:

اجب عن الاسئلة التالية:

1 - استنتج ماذا يحدث لذوبانية غازي (O2 ، N2)


بارتفاع درجة الحرارة؟ -----

2- من اجابتك بالخطوة (1) ما هي العلاقة بين ذوبانية الغازات ودرجة الحرارة؟ ولماذا؟

 $(20^{\circ}C)$ الغازين أكثر ذوبإناً في الماء عند درجة حرارة $(20^{\circ}C)$

4 – ما مقدار ذوبانية غاز الأكسجين في الماء عند ($70^{\circ}\mathrm{C}$) {من قراءتك للمنحنى ؟

5 – ما قيمة درجة الحرارة التي عندها ذوبانية غاز النيتروجين <u>أكبر</u> ما يمكن ؟-----

2- المنحنى الذي يمثل العلاقة بين ذوبانية كلورات البوتاسيوم ودرجة الحرارة .

والمطلوب اكمال العبارات التالية :

1- تقل ذوبانية كلورات البوتاسيوم في الماء (الساخن / البارد)

-2عملية ذوبان كلورات البوتاسيوم (ماصة / طاردة) للحرارة .

/ المحلول الذي يحتوي على $({
m C}_{\circ})$ 11 ${
m G}$ من كلورات البوتاسيوم عند $({
m C}_{\circ})$ يعتبر محلول (مشبع -3غير مشبع / فوق مشبع).....

4- استنتج العلاقة بين ذوبانية كلورات البوتاسيوم ودرجة الحرارة (طردية / عكسية)

ب- اختر من المجموعة (B) النوع المناسب للمجموعة (A) بوضع رقمه في المكان المناسب:

(36.2g/100gH2O) تساوي 20 0 C تساوي الصوديوم عند درجة حرارة كلوريد الصوديوم عند درجة حرارة

المجموعة (B)	الرقم	المجموعة (A)		الرقم المناسب	
محلول غير مشبع	1	اذابه $(36.2g)$ من ماده كلوريد الصوديوم في $(100g)$ من الماء عند $20^{0}\mathrm{C}$	()	
محلول مشبع	2	تسخين محلول كلوريد الصوديوم والذي يحتوي على (39g) منه في (100 g) من الماء ثم تبريد المحلول تدريجياً دون رج أو تقليب)	
محلول فوق مشبع	3				

ج - الجدول التالي يوضح ذوبانية كبريتات الصوديوم في الماء عند درجات حرارة مختلفة:

لمادة	(g / 100 g H ₂ O)الذوبانية				
8361	20°C	50°C	100°C		
.يوم (NaNO ₃)	88	114	182		

المطلوب:

- (1) أشرح ماذا يحدث لذوبانية نيترات الصوديوم بارتفاع درجة الحرارة
- _____
 - (2) أذكر نوع العلاقة بين ذوبانية نيترات الصوديوم ودرجة الحرارة
- _____
- (3) حدد نوع المحلول الناتج عند إذابة (75g) من نيترات الصوديوم في (100g) ماء عند (20°C)

التوجيه الفني العام للعلوم - بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) - 2024 / 2025
--

	الدرس (2-3) تركيب الماليل	
دل عليه كل من العبارات التالية :	اكتب بين القوسين الاسم او المصطلح العلمي الذى ت	لسؤال الاول :
()	كمي المذاب في كمية معينة من المذيب أو المحلول.	1. مقياس لا
()	الذي يحتوي على تركيز منخفض من المذاب.	2. المحلول
()	الذي يحتوي على تركيز مرتفع من المذاب.	3. المحلول
()	ت المذاب في $1~ m L$ من المحلول.	4. عدد مولاه
()	ت المذاب في 1 kg من المذيب.	5. عدد مولاه
()	المعلوم تركيزه بدقة.	6. المحلول
ة الصحيحة وكلمة ح خطأ عيب: القوسيب:	، : اكتب كلمة (صحيحة) بين القوسين المقابلين للعبار	السمّال الثانــ
	ى : رسب سبه (سبيسه) بين (سوسين رسبين سبر بة الفطأ في كل مما يلي:	
(11) تساوي (M 0.5 M) ()	طول يحتوي على (0.5 mol) من كلوريد الصوديوم في (L	1. مولارية م
لة في المحلول يقل. ()	ف محلول مركز بالماء المقطر فإن عدد مولات المادة المذاب	2. عند تخفيا
سع علامة $\langle ar{\lor} angle$ في المربع المقابل لها:	: اختر الإجابة الصحيحة لكل من العبارات التالية وض	لسؤال الثالث
ذابة في محلول حجمه (250 mL)	ت الصوديوم الهيدروجينية بالجرام (NaHCO3 = 84) المذ	1.كتلة كربونا
, , , , ,	.(0) تساوي أحد ما يلي :	•
2.1	0.2	21 🗆
210		21 🗆
500 mL) يساوي أحد ما يلي :	المذاب في محلوله المائي الذي تركيزه $(0.4 \mathrm{M})$ وحجمه (2. عدد مولات
0.4	1 🗖	.2
200	2	20 🗆
	ن ($\mathrm{H}=1,\mathrm{O}=16,\mathrm{Na}=23$ فإن التركيز المولاري لا	
•	سيد الصوديوم (NaOH) في الماء لتكوين لتر من المحلول	
0.5		5 🗆
0.003	5 - 0 () 0.0)3 <u> </u>

1x10 ⁴
يساوي أحد ما يلي : 10
10 0.01 0.01 0.1 0.1 0.1 0.5 0.00 و عند إذابة g 13.8 و من الماء فإن التركيز المولالي المحلول يساوي أحد ما يلي : 20 20 20 0.2 0.2 0.2 0.02 0.02 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.
0.01 □ 0.1 □ 0.1 □ 0.0 □ 0.0 □ 0.0 □ 0.0 □ 0.0 □ 0.0 □ 0.0 □ 0.3 € [ذابة g 13.8 g من الماء فإن التركيز المولالي المحلول يساوي أحد ما يلي : 20 □ 20 □ 0.2 □ 0.2 □ 0.0 □ 0.2 □ 0.0
المحلول يساوي أحد ما يلي : 13.8 و 138 من كربونات البوتاسيوم (138 = 138) في g 500 من الماء فإن التركيز المولالي المحلول يساوي أحد ما يلي : 20
المحلول يساوي أحد ما يلي : 20
20
0.02
(500 mL) فإن التركيز المولاري للمحلول الناتج يساوي أحد ما يلي : (500 mL) (500 mL) (0.8
0.8 0.8 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.4 M) 0.4 M) 0.5 Min 0.5 Min 0.5 Min 0.5 Min
0.02 □ 0.08 □ 8.2 محجم الماء بالمليليتر االلازم إضافته إلى (100 mL) من محلول حمض الكبريتيك الذي تركيزه (0.4 M) للحصول على محلول تركيزه (0.2 M) يساوي أحد ما يلي : □ 200 □ 400 □
— 8. حجم الماء بالمليليتر االلازم إضافته إلى (100 mL) من محلول حمض الكبريتيك الذي تركيزه (0.4 M) للحصول على محلول تركيزه (0.2 M) يساوي أحد ما يلي : □ 400 □
للحصول على محلول تركيزه (0.2 M) يساوي أحد ما يلي : \bigcup
200
7 0 7
السؤال الرابع: أكمل الفراغات في الجمل التالية بما يناسبها علمياً:
1. عند تخفيف محلول مائي مركز لمادة ما بالماء فإن عدد مولات المادة بعد التخفيف عدد مولات المادة قبل التخفيف في المحلول.
المعدد عبل المسيف عني المسون.
2. كتلة حمض الكبريتيك ($H_2SO_4 = 98$) اللازمة للحصول على محلول حجمه 1L وتركيزه ($0.25~\mathrm{M}$) تساوي
3. أذيب (4 g) من هيدروكسيد الصوديوم (NaOH = 40) في محلول حتى أصبح تركيزه (0.4 M) فيكون حجمه المساح المسا
4. إذا كان تركيز محلول هيدروكسيد الصوديوم يساوي (M 0.5 M) فإن كتلة هيدروكسيد الصوديوم NaOH المذابة في لتر من المحلول تساوي g g المذابة في لتر من المحلول تساوي

(41)	<u>2025 / 2024 – (</u>	ي عشر العلمي ـ (الجزء الأو	، أسئلة الكيمياء - الصف الحاد	، الفني العام للعلوم – بنك	التوجيه
:) تساو <i>ي</i>) وحجمه (500 cm³	$0.4~\mathrm{mol}/\mathrm{L}$) ترکیزہ	ذابة في محلول مائي منا		_
					mol
كيز المحلول	ركيزه M 15. 0 فإن تر	ن محلول حمض HCl ت	المقطر الى 200 mL مر		
				<u>M</u>	النائج يساوي
نركيزه 0.1	ركيزه M 0.3 ليصبح ن	وكسيد الصوديوم الذي ت	ml 300 من محلول هيدر		
				<u>mL</u>	M يساو <i>ي</i>
<i>وي</i>	مولاريته 0.4 M يسا	محلول حجمه 100 mL	ه M 2 واللازم لتحضير ،	-	· _
					<u>mL</u>
			نائية :	س: حل المسائل الـ	السؤال الخاه
(NaOH	وديوم (g/mol) = 40	4 من هيدروكسيد الص	علول الناتج عن إذابة g	"	
				من المحلول .	في 100 mL الحل
	$(C_6H_{12}O_6=180$	ي من الجلوكوز (g/mol	ثل محاليل مختلفة التركيز	جدول التالي الذي يم	2- ادرس ال
			المطلوب فيه:	، إكمال الجدول حسب	والمطلوب
	M	$V_{\rm L}$	n	ms	
	0.5	2		180	
_		0.5	0.2	36	
	2	-0	0.5	90	
	0.25	1	0.25		
م إضافته	احسب حجم الماء اللاز	و تركيزه (0.5 M)	رم حجمه (<mark>100 mL)</mark>	•	
		,	. (0.1 M)	ل على محلول تركيزه	إليه للحصو الحل
		(1.	W .		,ــــر
	77.7	J- 9U/	6 0 00		
			7 9 7		

(42)	التوجيه الفني العام للعلوم – بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) – 2024 / 2025
	السؤال السادس: ما المقصود بكلا مما يلي :
	1.التركيز المولاري (المولارية):
	<u></u>
	<u>3.المحلول القياسي :</u>
	<u>4.المحلول المخفف :</u>
	<u>5.المحلول المركز :</u>
	6.تركيز المحلول :
	السؤال السابع: ماذا تتوقع أن يحدث في الحالات التالية مع التفسير :
	السوال السابع: هادا تتوقع ال يحدث في الحادث العالية هع التعسير: 1 - لتركيز المحلول الناتج من إضافة 300 mL من الماء المقطر الى 300 mL من محلول حمض HCl
	. 2 M تركيزه
	التوقع:التوقع: التوقع: التوقيدين التوق
	,
	2- نعدد مولات المادة المذابة في المحلول عند إضافة كمية من الماء لها .
	التوقع:التوقع: التوقع:
	94/6 200

الدرس (2-4) الحسابات المتعلقة بالخواص المجمعة للمحاليل

	تالية :	لسؤال الاول : اكتب بين القوسين الاسم او المصطلح العلمي الذى تدل عليه كل من العبارات الـ
	1	1. التغيرات التي تحدث للخواص الفيزيائية للسائل المذيب عند إضافة المذاب إليه.
	(,
	,	2. الخواص التي تتأثر بعدد جزيئات المذاب بالنسبة إلى عدد جزيئات المذيب
	(ولا تتأثر بنوعها.
	,	3. ضغط البخار على السائل عند حدوث حالة اتزان بين السائل وبخاره عند درجة
	(حرارة معينة. 1 التفد في درجة غادات محامل تكنزه المملال ماجد لمذاب حنية غير متطاب
	(4. التغير في درجة غليان محلول تركيزه المولالي واحد لمذاب جزيئي غير متطاير.
	(5. التغير في درجة تجمد محلول تركيزه المولالي واحد لمذاب جزيئي وغير متطاير.
ىين	ين القود	لسؤال الثاني : اكتب كلمة (صحيحة) بين القوسين المقابلين للعبارة الصحيحة وكلمة (خطأ) بـ -
		المقابلين للعبارة الخطأ في كل مما يلي:
()	1. الخواص المجمعة للمحاليل تتأثر بعدد جسيمات المذاب بالنسبة لعدد جزيئات المذيب ولا تتأثر بنوع
`	,	جسيمات المذاب.
()	2. عند إضافة مذاب غير الكتروليتي وغير متطاير للماء يقل الضغط البخاري للمحلول الناتج.
()	3. عند إضافة مذاب غير الكتروليتي وغير متطاير للماء تزداد درجة غليان المحلول الناتج.
()	4. عند إضافة مذاب غير الكتروليتي وغير متطاير للماء تقل درجة تجمد المحلول الناتج.
()	5. عند زيادة تركيز محلول السكر في الماء يقل الضغط البخاري للمحلول الناتج عن المحلول الأصلي.
()	6. عند زيادة تركيز محلول اليوريا في الماء ترتفع درجة غليان المحلول الناتج عن المحلول الأصلي.
()	7. عند زيادة تركيز محلول السكر في الماء ترتفع درجة تجمده المحلول الناتج عن المحلول الأصلي.
()	8. كلما زادت درجة حرارة السائل زاد الضغط البخاري له .
()	9. كلما زاد الضغط البخاري للسائل زادت درجة غليانه.
		10. عند إذابة مذاب جزيئي غير متطاير في ماء نقي فإن مقدار الارتفاع في درجة غليان المحلول
()	يتناسب عكسيا مع التركيز المولالي للمحلول.
		11. عند إذابة مذابِ جزيئي غير متطاير في ماء نقي فإن مقدار الانخفاض في درجة تجمد المحلول
()	يتناسب عكسيا مع التركيز المولالي للمحلول.
		12. عند إذابة مذاب جزيئي غير متطاير في ماء نقي فإن مقدار الانخفاض في درجة تجمد المحلول
()	يزداد بزيادة التركيز المولالي للمحلول .
		13. مقدار الانخفاض في درجة تجمد محلول السكر الذي تركيزه m و يساوي مقدار الانخفاض في
()	محلول اليوريا الذي له نفس التركيز المولالي.

يلمي ـ (الجزء الأول) – <u>2024 / 2024</u>	الحادي عشر الع	أسئلة الكيمياء - الصف	توجيه الفني العام للعلوم – بنك	
ت في المناطق المتجمدة لتجنب	ى مبرد السيارا	جليكول إيثيلين) إا	ف مادة مضادة للتجمد (ح	۔ 14. تضا
()			مياه في المبرد .	تجمد الد
لية وضع علامة $\langle extstyle ar{\psi} angle$ في المربع المقابل لها:				
		، التالية للسكر في	د التراكيز المولالية للمحاليل 2.0	
0.2				
0.4 ما يمكن عندما يكون تركيزه المولالي أحد		ن محلول مائب للب	0.3 دار الارتفاع في درجة غليار	
له يحل حده يون عربيره الموردي الم	J OJ- <u></u> -J.	ے ۔۔۔رن می <u>ن</u> ۔۔۔		م. ما ما يلم
0.2			0.1	•
2			1	
\mathbf{K}_{bp} ل مائي للسكر تركيزه (\mathbf{m}) إذا كان	ي عندها محلول	السيليزية التي يغل	د ما يلي هي درجة الحرارة	3. أحا
			: 0.512 °C/m يساوى	للماء
100			99.488	
101			100.512	
درجة غليان هو الذي يكون تركيزه المولالي	الذي له أعلى ا	ية وغير المتطايرة		ء
1			ﺎ ي <i>ﻟﻲ:</i> 2	<u>احد</u> م
0.1			0.2	
		في الحمل التالية	الرابع: أكمل الفراغات ف	
			ضغط البخاري للماء النقي	
ائي لأي مادة غير الكتروليتية وغير متطايرة.	1000			
	Sec. 40		جة تجمد المحلول المائي ا	
1) فإن درجة تجمد محلول مائي للسكر	The same of the sa			
			ترکیزه 0.1 m تساوی	
5. 0) وأن درجة غليان محلول مائي لمادة	The second of th			5- إذ
	لمحلول يساوي	.100 فإن تركيز ا	$^{\circ}\mathrm{C}$ كتروليتية يساوي	غير ال
- درجة غليان نفس المحلول الذي تركيزه 0.1m	0.	ِ الذي تركيزه 4 m	جة غليان محلول السكروز	6- در
معينة من المذيب.	في كمية	فتمد على	فواص المجمعة للمحاليل ت	7- الـ
ضغط البخاري للمحلول يكونالضغط	ي سائل فإن الد	ية وغير متطايرة ف	د إذابة مادة غير الكترولية	ie –8
	(')		ب للسائل النقي عند درجة ا	

_	4		`
•	/	h	
	4	()	
١.	•	\sim	

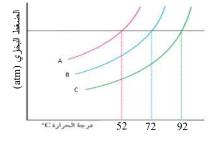
السؤال السادس: حل المسائل التالية:

$C_6H_{12}O_6$ من سكر الجلوكوز $C_6H_{12}O_6$ في $C_6H_{12}O_6$ من الماء فإذا كان ثابت الغليان للماء يساوي $C_6H_{12}O_6$ من سكر الجلوكوز $C=12$, $C=10$. احسب درجة غليان المحلول الناتج $C=12$, $C=12$. احسب درجة غليان المحلول الناتج
الحل
$ m C_6H_6$ من البنزين ($ m C_{10}H_8$ = $ m 128$) من النفتائين ($ m 20.8~g$) من البنزين – $ m -2$
فإذا علمت أن درجة غليان البنزين النقي ($^{\circ}$
<u>و المطلوب</u> : أيد من تراس المناف المراف المرافق
($ m K_{fp} = 5.2~^{o}C~kg/mol$) أولا : حساب درجة تجمد المحلول إذا علمت أن ثابت تجمد البنزين $ m K_{fp} = 5.2~^{o}C~kg/mol$
الحل
$ m K_{bp} = 2.53~^{o}C~kg/mol$ ثانيا : حساب درجة غليان المحلول إذا علمت أن ثابت غليان البنزين
9/19 8 9

(47)	التوجيه الفني العام للعلوم – بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) – 2024 / 2025
	3- يستخلص كحول اللورايل من زيت جوز الهند ويستخدم في صناعة المنظفات الصناعية .
ت	محلول مكون من $(g \ g)$ من كحول اللورايل و $(g \ g)$ من البنزين يغلي عند $(5 \ g)$ من كواد كاند
	درجة غليان البنزين النقي (80.1°C) وثابت الغليان للبنزين = (80.1°C) (2.53°C kg/mol)
	والمطلوب: احسب الكتلة الجزيئية للكحول
	الحل
الغليان	4- مادة كتلتها الجزيئية (254 g/mol) أذيبت كتلة معينة منها في (45 g) إيثر فكان الارتفاع في درجة
	2. 16 °C kg/mol = احسب كتلة هذه المادة إذا علمت أن ثابت الغليان للإيثر (0.585 °C)
	الحل
(5- إذا علمت أن محلول اليوريا في الماء الذي تركيزه (0 . 1 mol / kg) يغلي عند (0° 250 .052 °C)
	فاحسب قيمة ثابت الغليان للماء
	الحل
ند	6- احسب كتلة الجليسرول C3H8O3 اللازم إذابتها في (500 g) من الماء لكي يغلى المحلول الناتج عا
(C =	$12~,\mathrm{O}=16~,\mathrm{H}=1~,0~.52~^{\mathrm{o}}\mathrm{C}~\mathrm{kg}/\mathrm{mol}=100~.208~^{\mathrm{o}}\mathrm{C}~)$ علماً بأن: (ثابت غليان الماء
	الحل
	** (1, Z * a
	J 99/ C 7 00

(48)	التوجيه الفني العام للعلوم – بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) – 2024 / 2025
عند	7- أذيب $(2.5 \mathrm{g})$ من مادة صلبة غير الكتروليتية غير متطايرة في $(2.5 \mathrm{g})$ من مذيب فتجمد المحلول
	°C. 4 احسب الكتلة الجزيئية للمذاب علماً بأن درجة تجمد المذيب النقي (5.5°C) وأن ثابت التجمد لها
	. (5.1 °C kg/mol) المذيب يساوي
	الحل
تساو <i>ي</i>	8- أذيب (6.67 g) من مادة غير الكتروليتية وغير متطايرة في (20 g) من الماء فكانت درجة غليان المحلول
	(100.5°C) فما الكتلة المولية لهذه المادة ؟ علماً بأن ثابت الغليان للماء يساوي (0.512°C/m)
	الحل
) - ثابت	-9 - اذيب 49.63 g من مركب غير الكتروليتي في 1 kg ماء فاذا علمت أن درجة تجمد المحلول 2° 0 0 0 0 0 0 0 0 0 0
	السؤال السابع: ما المقصود:
	ر <u>ــــــــــــــــــــــــــــــــــــ</u>
	2- الضغط البخاري:
	3- ثابت الغليان المولالي (الجزيئي):
	4- <u>ثابت التجمد المولالي(الجزيئي):</u>

(49)	التوجيه الفني العام للعلوم – بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) – 2024 / 2025


مع التفسير:	الحالات التالية	ماذا يحدث في	السؤال الثامن:
	**	•	

1– للض	ط البخاري للماء	النقي عند	اذابه مادة	بر متطاب	۽ وغير	الكتروليتد	هٔ فیه وتک	كوين محلو	. ل		
الحدث:	• • • • • • • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • •			• • • • • • • • •	•••••	• • • • • • •	• •
التفسي											

السؤال التاسع : أ - ادرس الرسم البياني المقابل ثم أكمل ما يلي:

الشكل الذي أمامك يوضح العلاقة بين الضغط البخاري لمحلول

ما ذو تراكيز مختلفة ودرجة الحرارة ومن خلال الرسم فإن:

- المحلول الذي تتحول جزيئاته للحالة الغازية أولا هو
- المحلول الأعلى تركيزاً من بين المحاليل التالية هو

ب أكمل الفراغات في الجدول التالي : حسب المطلوب :

أمامك إناءان حجمهما متساو, أذيبت كتل متساوية من السكروز في حجمين مختلفين من الماء لعمل محلولين عند درجة حرارة معينة. والمطلوب: لاحظ الإناءين جيدا ثم أكمل الفراغات في الجدول التالي:

	وجه المقارنة
	حجم المحلول
	(أكبر – أقل – نفس الحجم)
	تركيز المحلول
	(أكبر – أقل – نفس التركيز)
26	نوع المحلول (مركز – مخفف)
	درجة الغليان (أكبر القل)
~ 94/ 6°	درجة التجمد (أكبر القل)

الوحدة الثالثة الكيمياء الحرارية

الفصل الأول الكيمياء الحرارية

الدرس (1-1) التغيرات الحرارية

السؤال الأول: اكتب الاسم أو المصطلح العلمي الذي تدل عليه كل من العبارات التالية:

		1.أحد أهم فروع الكيمياء الفيزيائية، التي تهتم بدراسة التغيرات الحرارية التي ترافق
()	التفاعلات الكيميائية.
()	2. جزء معين من المحيط الفيزيائي الذي هو موضوع الدراسة.
()	3.مجموعة أجسام مادية تتفاعل فيما بينها بطريقة تعكس نمطاً معيناً في بنية
		العالم المادي.
()	4. الجزء المتبقي من الفضاء الذي يحيط بالنظام.
()	5. الطاقة التي تتدفق داخل النظام أو خارجه بسبب وجود اختلاف في درجة الحرارة
		بين النظام ومحيطه.
()	6. تفاعلات تنتج طاقة حرارية يمتصها المحيط خارج النظام.
()	7. تفاعلات يمتص فيها النظام طاقة حرارية من المحيط خارج النظام.
()	8. تفاعلات لا يتبادل فيها النظام طاقة حرارية مع المحيط خارج النظام.
()	9. كمية الحرارة الممتصة أو المنطلقة خلال تفاعل كيميائي تحت ضغط ثابت.
()	10. كمية الحرارة التي تنطلق أو تمتص عندما يتفاعل عدد من المولات للمواد
		المتفاعلة مع بعض خلال تفاعل كيميائي لتتكون مواد ناتجة.
()	11. محصلة تغيرات الطاقة الناتجة عن تحطم الروابط الكيميائية في المواد
		المتفاعلة وتكوين روابط جديدة في المواد الناتجة.
()	12. التغير في المحتوي الحراري المصاحب لتكوين مول واحد من المركب انطلاقا
		من عناصره الأولية بحالتها القياسية عند الظروف القياسية 25°C وتحت ضغط
		يعادل 101.3kPa
()	13. كمية الحرارة المنطلقة عند احتراق مول واحد من المادة (عنصرية أو مركبة)
		احترقاً تاماً في وجود وفرة من الأكسجين أو الهواء الجوي عند $^{\circ}$ C وتحت
		ضغط یعادل 1 atm .
()	14. حرارة التفاعل الكيميائي تساوي قيمة ثابتة سواء حدث هذا التفاعل مباشرة
		خلال خطوة واحدة أو خلال عدة خطوات.
()	15. التفاعلات الكيميائية التي يكون التغير في الإنثالبي لها أكبر من صفر
1	N.	. $(\Delta H_r > 0)$
(1	16. التفاعلات الكيميائية التي يكون التغير في الإنثالبي لها أصغر من صفر
		$(\Delta H_r < 0)$

(52)		التوجيه الفني العام للعلوم - بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) - 2024 / 2025
(17. التفاعلات الكيميائية التي يكون التغير في الإنثالبي لها يساوي من صفر
		$(\Delta H_r = 0)$
(18. التفاعلات الكيميائية التي يكون التغير في الإنثالبي لها إشارة موجبة.
(19. التفاعلات الكيميائية التي يكون التغير في الإنثالبي لها إشارة سالبة.
	A : • A	
) بین	السؤال الثاني : اكتب كلمة (صحيحة) بين القوسين المقابلين للعبارة الصحيحة وكلمة (خطأ :
		القوسين المقابلين للعبارة الخطأ في كل مما يلي:
()	1. طبقا لعلم الكيمياء الحرارية فإن الفضاء والمحيط يشكلان النظام .
()	$HCl_{(aq)} + NaOH_{(aq)} \rightarrow NaCl_{(aq)} + H_2O_{(l)} + 57.7 \text{ kJ}$ طبقا للتفاعل التالي: 2
		فإن التغير في المحتوى الحراري له يأخذ إشارة موجبة .
()	ΔH) للمواد المتفاعلات الطاردة للحرارة يكون فيها (ΔH) للمواد الناتجة أكبر من (ΔH) للمواد المتفاعلة .
()	4. التفاعلات اللاحرارية يكون فيها (ΔH) للمواد الناتجة تساوي (ΔH) للمواد المتفاعلة.
()	5. التفاعلات الماصة للحرارة يكون لقيمة $(\Delta ext{H})$ إشارة موجبة .
()	δ . إذا كانت لقيمة (ΔH) إشارة موجبة فإن مجموع المحتويات الحرارية للمواد الناتجة أقل من
		مجموع المحتويات الحرارية للمواد المتفاعلة .
()	$2{ m CO}_{({ m g})} + { m O}_{2({ m g})} ightarrow 2{ m CO}_{2({ m g})} + 568~{ m kJ}$: طبقا للتفاعل التالي .7
		. ($ m CO_2$) فإن المحتوى الحراري لغاز ($ m CO$) أكبر من المحتوى الحراري لغاز
()	$ m N_{2(g)} + O_{2(g)} o 2NO_{(g)} , \Delta H = +180 \; kJ \; .8$. طبقا للتفاعل التالي:
		فإن المحتوى الحراري لغاز (NO) أكبر من مجموع المحتويات الحرارية لغازي (O_2)، فإن المحتوى الحرارية لغازي (O_2).
()	9. إذا كانت حرارة التكوين القياسية لأكسيد الحديد III (Fe ₂ O ₃) ولأكسيد الحديد المغناطيسي
		(Fe ₃ O ₄) هي على الترتيب (Fe ₃ O ₄ , -824 kJ/mol) فإن التفاعل التالي :
,	,	. يكون طارد للحرارة $6 \operatorname{Fe_2O_{3(s)}} o 4 \operatorname{Fe_3O_{4(s)}} + \operatorname{O_{2(g)}}$
()	10. المحتوى الحراري لغاز الأكسجين (O ₂) يساوي المحتوى الحراري للصوديوم (Na) الصلب في
1	`	الظروف القياسية .
(,	11. حرارة التكوين القياسية للمركب تساوي المحتوى الحراري له.
()	$2 ext{H}_{2(\mathrm{g})} + ext{O}_{2(\mathrm{g})} o 2 ext{H}_2 ext{O}_{(\mathrm{g})}$, $\Delta ext{H} = -483.6 \ ext{kJ}$. الطاقة المصاحبة للتغير التالي: $\Delta ext{H}_{2(\mathrm{g})} + \Omega_{2(\mathrm{g})} o 2 ext{H}_2 ext{O}_{2(\mathrm{g})}$. تسمى حرارة التكوبن القياسية للماء .
`	,	$\mathrm{SO}_{2(\mathrm{g})} + {}^{1\!\!/}_2\mathrm{O}_{2(\mathrm{g})} o \mathrm{SO}_{3(\mathrm{g})} , \Delta \mathrm{H} = + 49 \;\mathrm{kJ}$. الطاقة المصاحبة للتغير التالى :
()	13. المستور المستور القياسية لغاز ثاني أكسيد الكبريت . تسمى حرارة الاحتراق القياسية لغاز ثاني أكسيد الكبريت .

```
التوجيه الفني العام للعلوم - بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) - 2024 / 2025
(53)
                          2Al_{(s)} + \frac{3}{2}O_{2(g)} \rightarrow Al_2O_{3(s)}, \Delta H_f^0 = -1669.7 \text{ kJ} : طبقا للتفاعل التالى: 14
                  فإن حرارة التكوبن القياسية لأكسيد الألومنيوم Al2O3 تساوي حرارة الاحتراق القياسية للألومنيوم .
                                                       15. المحتوى الحراري للعنصر في حالته القياسية يساوي صفراً.
                                                             16. التغير في المحتوى الحراري المصاحب للتفاعل التالي:
                  يسمى حرارة التكوبن القياسية لغاز كلوريد الهيدروجين H_{2(g)} + \text{Cl}_{2(g)} 	o 2H\text{Cl}_{(g)} +184.6 \text{kJ}
                                                               17. حرارة التكوبن القياسية للأمونيا في التفاعل التالى:
                                                          N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}, \Delta H = -92.38 \text{ kJ}
                     - 92.38
                                   تساوي kJ/mol
                                                             18. التغير في المحتوى الحراري المصاحب للتفاعل التالي:
                                      N_{2(g)} + 2O_{2(g)} \rightarrow N_2O_{4(g)}, \Delta H^{\circ}c = +9.6 \text{ kJ/mol}
                                                                      يسمى حرارة الاحتراق القياسية للنيتروجين.
                        C_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{(g)} التغير في المحتوى الحراري المصاحب للتفاعل التالي: 19
                                                                              يعتبر حرارة احتراق قياسية للكربون
                                                            20. التغير في المحتوى الحراري المصاحب للتفاعل التالي:
                                   CO_{(g)} + {}^{1}/_{2}O_{2(g)} \rightarrow CO_{2(g)} \Delta H = -283.5 kJ/mol
                                                                         يعتبر حرارة احتراق قياسية لغاز CO .
                                                            21. التغير في المحتوى الحراري المصاحب للتفاعل التالي:
                                    CO_{(g)} + {}^{1}/_{2}O_{2(g)} \rightarrow CO_{2(g)} \Delta H = -283.5 \text{ kJ/mol}
                                                                             يعتبر حرارة تكوبن قياسية لغاز CO2
                                                             22. التغير في المحتوى الحراري المصاحب للتفاعل التالي:
                     H-Cl يعتبر حرارة تكوبن قياسية لغاز H_{(g)}+Cl_{(g)} 	o HCl_{(g)} , \Delta H=-432 {
m kJ/mol}
                 23. إذا كانت حرارة التكوين القياسية لأكسيد الخارصين ( ZnO ) تساوي 348 kJ / mol - ، فإن
                                            حرارة الاحتراق القياسية للخارصين ( Zn ) تساوي ( H 348 kJ / mol ) حرارة الاحتراق القياسية للخارصين
                   24. التغير في المحتوى الحراري لأي تفاعل كيميائي يكون أقل ما يمكن عندما يتم هذا التفاعل في
                                                                                                             خطوة وإحدة.
```

1	- 1	,
•	74	
1	\mathcal{I}^{T}	

التوجيه الفني العام للعلوم – بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) – 2024 / 2025

اها:	المقايل	أن المائع	id	ع علامة	لتالية هظ	ن العبارات ا	حبحة لكل م	الأحابة الص	، الثالث : اخت	السذال
•		ی رحریجی	$\mathbf{F} \setminus \mathbf{Y}$							

ت ($\Delta {f H}$) لتفاعل ما لها إشارة موجبة فإن التفاعل يسمى أحد ما يلي:	1.إذا كان
لا حراري المحيط المحيط المحيط	
ماص للحرارة	
$ m N_{2(g)} + 2O_{2(g)} + 68~kJ ightarrow 2NO_{2(g)}$ العبارات التالية صحيحة بالنسبة للتفاعل التالي:	2.إحدى
تفاعل ماص للحرارة	
تفاعل طارد للحرارة	
المحتوى الحراري للمتفاعلات أكبر من المحتوى الحراري للنواتج	
المحتوى الحراري للمتفاعلات يساوي المحتوى الحراري للنواتج	
$(\Delta ext{H})$ نان قيمة، $ ext{C}_{(ext{graphite})} + ext{O}_{2(ext{g})} ightarrow ext{CO}_{2(ext{g})}$ ، نان قيمة $ ext{CH}$	3. طبقا
ول للتفاعل التالي: $\mathrm{CO}_{2\mathrm{(g)}} o \mathrm{C}_{\mathrm{(graphite)}} + \mathrm{O}_{2\mathrm{(g)}}$ ، تساوي أحد ما يلي:	
-394 □ -788	
+788	
للمعادلة الحرارية التالية : $\Delta H = -92$ فإن كمية الحرارة $N_{2(g)} + 3H_{2(g)} o 2NH_{3(g)}$ فإن كمية الحرارة عند تكون (2 mol) من الامونيا تساوي أحد ما يلى:	
عد عوق (1 mor) من معرف عدوي مد عدي -46 □ -46	
+92	
172	_
التغير التالي: ΔH =-1670 kJ ، فإن حرارة الاحتراق، $\Delta Al_{(s)} + rac{3}{2}O_{2(g)} o Al_2O_{3(s)}$ ، ΔH =-1670 kJ ، فإن حرارة	5. حسب
للألومنيوم بالكيلو جول /مول ، تساوي أحد ما يلي:	القياسية
-835 □ -1670	
+835 + 1670	
	<i>-</i>
للتفاعل التالي $286 ext{ kJ/mol}: \Delta H_{2(g)} + \frac{1}{2}O_{2(g)} \xrightarrow{\Delta} H_{2O_{2(g)}} + \frac{1}{2}O_{2(g)}$ التفاعل التالي $\frac{\Delta}{2}$ التفاعل التالي القياسية	
بالكيلو جول /مول تساوي أحد ما يلي: الله الله الله الله الله الله الله الل	
-286	
T200	
المواد التالية حرارة تكوينها القياسية تساوي صفر:	7. إحدى
$Br_{2(g)}$ \square $I_{2(g)}$	
$Hg(g)$ \square $F_{2(g)}$	

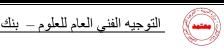
ي العام للعلوم – بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) – 2024 / 2025	التوجيه الفني
مية الحرارة المصاحبة لاحتراق $20 \mathrm{g}$ من الكالسيوم ($\mathrm{Ca}=40$) تساوي $318~\mathrm{kJ}$ ، فإن	8. إذا كانت ك
بن القياسية لأكسيد الكالسيوم CaO بالكيلو جول /مول ، تساوي أحد ما يلي:	حرارة التكوب
-318 □ -6.	36 □
⁺⁶³⁶ □ +31	8 🗆
$2\mathrm{Fe}_{(\mathrm{s})}+\left.^3\!\!\left/_2\mathrm{O}_{2(\mathrm{g})}\right. ight.$ دلة الكيميائية الحرارية التالية : $\mathrm{Fe}_2\mathrm{O}_{3(\mathrm{s})}+820~\mathrm{kJ}$	9. طبقاً للمعا
ميع العبارات التالية صحيحة <u>عدا</u> واحدة:	نستنتج أن ج
رة التكوين القياسية لأكسيد الحديدIII تساوي 820 kJ / mol -	🗆 حرا
رة الاحتراق القياسية للحديد تساوي 410 kJ / mol -	🗆 حرا
حتوى الحراري للناتج أكبر من المحتوي الحراري للمواد المتفاعلة	الم
رة التفاعل تساو <i>ي</i> 820 kJ -	حرا
ىل الاحتراق التالي: $\mathrm{CH_4} + 2\mathrm{O}_2 o \mathrm{CO}_2 \ + 2\mathrm{H_2O} + 890 \; \mathrm{kJ}$ فإن أحد ما يلي صحيح	10. طبقاً لتفاء
يد النظام الحرارة إلى محيطه 🔲 النظام لا يطرد ولا يمتص الحرارة	🗖 يطر
$+890~\mathrm{kJ}$ ص النظام الحرارة من محيطه \square	يمة
حرارة التكوين القياسية للماء السائل (H ₂ O) تساوي (286 kJ/mol-) فإن حرارة احتراق	11. إذا كانت ٠
ىن الهيدروجين (H_2) بالكيلو جول تساوي أحد ما يلي :	مولین ه
-286 □ -57	2 🗆
+572	б
صاحبة للتغير التالى $\Delta ext{H}=-220~ ext{kJ}$ تمثل أحد مايلى:	12. الطاقة الم
رة الاحتراق القياسية للكربون 🔲 حرارة التكوين القياسية لغاز أول أكسيد الكربون	
رة الاحتراق القياسية لغاز CO طعف حرارة التكوبن القياسية لغاز CO	
$2 ext{C}_2 ext{H}_{4(\mathrm{g})} + 6 ext{O}_{2(\mathrm{g})} o 4 ext{CO}_{2(\mathrm{g})} + 4 ext{H}_2 ext{O}_{(\mathrm{l})} + 2750 ext{ kJ}:$ مل الاحتراق التالي	13. طبقاً لتفاء
ارة الاحتراق القياسية للإيث <mark>ين بالكيلو جول /مول تساوي أحد مايلي:</mark>	فإن حر
−1375 □ −27	50 🗆
+5500 +13	75 _□
	_
راري ΔH المصاحب لأحد مايلي يسمى حرارة التكوين القياسية لكلوريد الفضة $AgCl_{(s)}$: $\Delta G^+Cl_{(s)}$	
$Ag^{+}_{(aq)} + Cl^{-}_{(aq)} \rightarrow Ag^{+}Cl^{-}_{(s)}$ $Ag_{(s)} + \frac{1}{2}Cl_{2(g)} \rightarrow AgCl_{(s)}$	
$AgCl_{(s)} \rightarrow Ag_{(s)} + \frac{1}{2}Cl_{2(g)}$	
$Ag_{(s)} + AuCl_{(aq)} \rightarrow Au_{(s)} + AgCl_{(s)}$	

السؤال الرابع : املاً الفراغات في الجمل والعبارات التالية بما يناسبها علميا

- 1. إذا كانت قيمة ΔH أكبر من ΔH في تفاعل ما فإن قيمة ΔH لهذا التفاعل لها إشارة ΔH ويكون هذا التفاعل من النوع ΔH للحرارة .
- 2. التفاعلات الكيميائية الطاردة للحرارة يكون فيها التغير في الإنثالبي للمواد المتفاعلة ------ من التغير في الإنثالبي للمواد الناتجة .
 - 3. عندما تتعادل كمية الحرارة اللازمة لتفكيك الروابط في جزئيات المتفاعلات مع كمية الحرارة اللازمة لتكوين الروابط في جزئيات النواتج، يسمى هذا التفاعل تفاعلاً ------
- 4. التفاعلات الكيميائية الماصة للحرارة يكون فيها كمية الحرارة المصاحبة لتفكيك الروابط في جزيئات المتفاعلات ------- من كمية الحرارة المصاحبة لتكوين الروابط في جزيئات النواتج.

 - ، فإن المحتوى الحراري لبخار الماء ------ المحتوى الحراري للماء السائل في الظروف القياسية .
 - $CH_3OH_{(l)} \rightarrow CH_3OH_{(g)}$, $\Delta H = +37 \; kJ \; / \; mol$. 6. حسب المعادلة الحرارية التالي التالي الميثانول السائل . فإن التغير في الإنثالبي للميثانول السائل .
- (-1246) ، (-1670) هي على الترتيب (-1246) ، (-1670) هي على الترتيب (-1246) ، (-1246) . (-1246) القياسية لكل من (-1246) هي على الترتيب (-1246) ، (-1246) القياسية لكل من (-1246) الهذا التفاعل: -1246 فإن قيمة المحتوى الحراري (-1246) لهذا التفاعل: -1246 فإن قيمة المحتوى الحراري (-1246) لهذا التفاعل: -1246
 - 9. بالاستعانة بالمعادلتين التاليتين:

 $\begin{array}{c} C_{(s)}+\sqrt[4]{2}\;O_{2(g)}\;\to CO_{(g)}\;\;, \Delta H\;=\text{-}\;109\;\;\text{kJ}\;/\;\text{mol}\\ CO_{(g)}+\sqrt[4]{2}O_{2(g)}\to\;CO_{2(g)}\;\;,\;\;\Delta H\;=\text{-}\;283.5\text{kJ/mol} \end{array}$


نستنتج أن حرارة التكوين القياسية لغاز ثاني اكسيد الكربون تساوي --------

- $4Cr_{(s)} + 3O_{2(g)} \rightarrow 2Cr_2O_{3(s)}$, $\Delta H = -2282 \text{ kJ}$: عسب المعادلة الحرارية التالية -10 . -10 تكون حرارة التكوين القياسية لأكسيد الكروم (-10) تساوي
- 11. إذا كانت حرارة التكوين القياسية لغاز ثاني أكسيد الكربون CO₂ تساوي (394 kJ/mol -) فإن حرارة الاحتراق القياسية للكربون تساوي (kJ/mol ------

التوجيه الفني العام للعلوم – بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) – 2024 / 2025	
إذا كانت حرارة الإحتراق القياسية لغاز الإيثان $(C_2H_6=30)$ تساوي 1560 kJ/mol أذا كانت حرارة الإحتراق القياسية لغاز الإيثان	.12
$$ kJ من غاز الإيثان ($\mathrm{C_2H_6}$)، تساوي مند احتراق ($\mathrm{15~g}$) من غاز الإيثان ($\mathrm{C_2H_6}$	المنطلة
ΔH تعتبر حرارة الاحتراق القياسية حرارة منطلقة ، لذلك قيمة ΔH لها ذات إشارة	.13
$\Delta ext{H} > 0$ عندما يكون التغير في الإنثالبي $\Delta ext{H} > 0$ يكون التفاعل من النوع	.14
عند احتراق ($4~\mathrm{g}$) من غاز الميثان ($\mathrm{CH_4}=16$) احتراقا تاماً ينطلق $220~\mathrm{kJ}$ فإن حرارة الإحتراق	.15
ية لغاز الميثان تساوي	القياسر
طبقا للتفاعل التالي $4 o 2H_{2(g)} + O_{2(g)} \stackrel{\Delta}{ o} 2H_2O_{(\ell)}$, ΔH = -572 kJ/mol : طبقا للتفاعل التالي	.16
ية للهيدروجين ، تساوي	القياسر
$4 { m Al}_{({ m s})} + 3 { m O}_{2({ m g})} \; ightarrow \; 2 { m Al}_2 { m O}_{3({ m s})} , \Delta { m H} =$ - $3340~{ m kJ}$ طبقا للتغير التالي:	.17
ارة الاحتراق القياسية للألومنيوم تساوي kJ/mol	فإن حر
التكوين القياسية لأكسيد الألومنيوم تساوي kJ/mol	وحرارة
4 4 • 44 4•44	44 44
ل الخامس: علل ﴿ فَسَرٍ ﴾ ما يلي:	-
$ m H_{2(g)} + lac{1}{2}O_{2(g)} ightarrow H_2O_{(\ell)} \ , \ \Delta H = -285.8 \ kJ/mol \ :$ طبقا للتفاعل التالي	
برارة التكوين القياسية للماء السائل (H2O) تساوي حرارة الاحتراق القياسية لغاز الهيدروجين (H2) .	فان ح
$ m C_{(s)} + O_{2(g)} ightarrow CO_{2(g)} \ , \Delta H =$ - $393.5~{ m kJ/mol}~:$ طبقا للتغير التالى	-2
إرة التكوين القياسية لغاز ثاني أكسيد الكربون تساوي حرارة الاحتراق القياسية للكربون .	فان حر
$2\mathrm{Al}_{(\mathrm{s})} + 1^{1}\!\!/_{2}\mathrm{O}_{2(\mathrm{g})} \longrightarrow \mathrm{Al}_{2}\mathrm{O}_{3(\mathrm{s})}$ طبقا للتغير التالي :	-3
ن حرارة الاحتراق القياسية للألومنيوم تساوي نصف حرارة التكوين القياسية لأكسيد الألومنيوم.	فإ
99/16 = 00	
AA.	

(58)	التوجيه الفني العام للعلوم – بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) – 2024 / 2025	
	${ m SO}_{2({ m g})} + {}^1\!\!/_2{ m O}_{2({ m g})} + 49{ m kJ} ightarrow { m SO}_{3({ m g})}$ الحرارة المصاحبة للتغير التالي:	-4
	لا تعتبر حرارة الاحتراق القياسية لغاز ثاني أكسيد الكبريت.	
	التفاعل التالي: ΔH = -1669.8 kJ/mol طارد للحرارة. ΔH = -1669.8 kJ/mol طارد للحرارة.	-5
	تفاعل حمض الأسيتيك مع الايثانول لتكوين الاستر والماء يعتبر من التفاعلات اللاحرارية.	 -6
	$ m C_{(s)}+^{1}\!/_{2}O_{2(g)} ightarrow CO_{(g)}~, \Delta H=-110.5 kJ/mol~$ الحرارة المصاحبة للتفاعل التالي:	 -7
	تبر حرارة احتراق قياسية للكربون. 	<u>لا تع</u> نــــــــــــــــــــــــــــــــــــ
	لا يحدث تغير في الإنثالبي في التفاعلات الكيميائية اللاحرارية.	 -8
	$ m H_{2(g)}+Cl_{2(g)} ightarrow 2HCl_{(g)}+184.6~kJ:$ التغير في المحتوى الحراري المصاحب للتفاعل التالي: $ m H_{2(g)}+Cl_{2(g)} ightarrow 2HCl_{(g)}+184.6~kJ$ لا يسمى حرارة التكوين القياسية لغاز كلوريد الهيدروجين.	 -9
	معلى	

(59)	لجزء الأول) - 2024 / 2025	الحادي عشر العلمي - (ا	، أسئلة الكيمياء - الصف

ؤال السادس: ماذا تتوقع ان يحدث في كل من الحالات التالية	السر
(م $\Delta H_{ m init}$ لنوع التفاعل الكيميائي من حيث التغير الحراري إذا كان النتجة $\Delta H_{ m init}$)	.1
الحدث:	
التفسير:	
لنوع التفاعل الكيميائي من حيث التغير الحراري إذا كانت (ΔH) للتفاعل لها إشارة سالبة.	.2
الحدث:	
التفسير:	
لنوع التفاعل الكيميائي من حيث التغير الحراري إذا كانت قيمة التغير في الإنثالبي مساوية الصفر.	.3
الحدث:	
التفسير:	
لدرجة حرارة الوسط المحيط عندما يتفاعل الهيدروجين مع الكربون لتكوين غاز الإيثاين طبقاً للمعادلة التالي	.4
$H_{2(g)}+2C_{(s)}+227kJ\rightarrow C_2H_{2(g)}$	
الحدث:	
التفسير:	
لدرجة حرارة الوسط عند تفاعل غاز النيتروجين مع غاز الاكسجين لتكوين غاز أكسيد النتريك طبقاً للمعادلا	.5
	التالي
$N_{2(g)} + O_{2(g)} + 180.6 kJ \rightarrow 2NO_{(g)}$	
التفسير :	
+ 1/O CO AH = 293.5 lt I/mol	.1 6
$_{ m g)}+\sqrt{1/2}{ m O}_{2({ m g})} ightarrow{ m CO}_{2({ m g})}$, $\Delta { m H}$ = $-283.5~{ m kJ/mol}$ جة حرارة المحيط عند اتمام التفاعل التالي:	.U
الحدث:	
التفسير:	

1	611	١.
•	υu	,

السؤال السابع: حل المسائل التالية

يحترق سكر الجلوكوز اثناء عملية التنفس في جسم الانسان طبقاً للمعادلة التالية	.1
$C_6H_{12}O_{6(s)} + 6O_{2(g)} \rightarrow 6CO_{2(g)} + 6H_2O_{(\ell)}$, $\Delta H = kJ/mol$	
فاذا علمت ان حرارة التكوين القياسية لكل من الجلوكوز، ثاني اكسيد الكربون والماء هي على الترتيب	
والمطلوب: حساب حرارة هذا التفاعل (-285.8, -393.5, -1268) kJ/mol	
******************	*
$ m N_{2(g)}+3H_{2(g)} ightarrow2NH_{3(g)}$, $ m \Delta H$ = - $92~kJ$ التالية:	(2
$({ m N}=14,{ m H}=1)$ من الامونيا ($({ m S})$ من الامونيا) من الامونيا	احسب
	الحل
7 that 7 to 11 7 ft 6th 6th 6th 11 12 1	12
مستعینا بالمعادلات الکیمیائیة الحراریة التالیة: $\Delta H = + 180.6 \; \mathrm{kJ}$ - $N_{2(\mathrm{g})} + O_{2(\mathrm{g})} ightarrow 2NO_{(\mathrm{g})}$	(3
2- NO _{2(g)} \rightarrow NO _(g) $+ \frac{1}{2}$ O _{2(g)} Δ H = + 58 kJ	
$^{1}/_{2} m N_{2(g)}+O_{2(g)} ightarrow m NO_{2(g)} ightarrow \Delta H=?$ بب ما يلي: حرارة التفاعل التالي:	أحس

	ف الحادي عشر العلمي - (الجزء الأول) – 2024	مسل التوجيه الفني العام للعلوم - بنك أسئلة الكيمياء - الص
		4) مستعينا بالمعادلات الحرارية التالية:
$1-2H_{2(g)}+$	$O_{2(g)} \rightarrow 2H_2O_{(\ell)}$	$\Delta \mathbf{H} = -571 \mathbf{kJ}$
$2- C_3H_{4(g)} +$	$4O_{2(g)} \rightarrow 3CO_{2(g)} + 2H_2O_{(f)}$,	$\Delta H = -1943.71 \text{ kJ}$
3- $C_3H_{8(g)}$ +	$\mathbf{5O}_{2(g)} \rightarrow \mathbf{3CO}_{2(g)} + \mathbf{4H}_2\mathbf{O}_{(\ell)}$	$\Delta H = -2215.4 \text{ kJ}$
		احسب قيمة الطاقة المصاحبة للتفاعل التالي:
	$C_3H_{4(g)} + 2H_{2(g)} \rightarrow C_3H_{8(g)}$,	ΔH= kJ
*********	******************	*******
*****	< * * * * * * * * * * * * * * * * * * *	*************************************
	$1 - 2C_{(s)} + 3H_{2(g)} \rightarrow C_2H_{6(g)}$	
		5) مستعينا بالمعادلات الكيميائية الحرارية التالية:
	$1 - 2C_{(s)} + 3H_{2(g)} \rightarrow C_2H_{6(g)}$	5) مستعینا بالمعادلات الکیمیائیة الحراریة التالیة: $\Delta H = -86 kJ/mol$
	1 - $2C_{(s)} + 3H_{2(g)} \rightarrow C_2H_{6(g)}$ 2 - $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$ 3 - $H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(\ell)}$: $\Delta H = -86 \text{kJ/mol}$ $\Delta H = -394 \text{kJ/mol}$ $\Delta H = -286 \text{kJ/mol}$ $\Delta H = -286 \text{kJ/mol}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$: $\Delta H = -86 \text{kJ/mol}$ $\Delta H = -394 \text{kJ/mol}$ $\Delta H = -286 \text{kJ/mol}$ $\Delta H = -286 \text{kJ/mol}$
	1 - $2C_{(s)} + 3H_{2(g)} \rightarrow C_2H_{6(g)}$ 2 - $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$ 3 - $H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(\ell)}$: $\Delta H = -86 \text{kJ/mol}$ $\Delta H = -394 \text{kJ/mol}$ $\Delta H = -286 \text{kJ/mol}$ $\Delta H = -286 \text{kJ/mol}$
	1 - $2C_{(s)} + 3H_{2(g)} \rightarrow C_2H_{6(g)}$ 2 - $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$ 3 - $H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(\ell)}$: $\Delta H = -86 \text{kJ/mol}$ $\Delta H = -394 \text{kJ/mol}$ $\Delta H = -286 \text{kJ/mol}$ $\Delta H = -286 \text{kJ/mol}$
	1 - $2C_{(s)} + 3H_{2(g)} \rightarrow C_2H_{6(g)}$ 2 - $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$ 3 - $H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(\ell)}$: $\Delta H = -86 \text{kJ/mol}$ $\Delta H = -394 \text{kJ/mol}$ $\Delta H = -286 \text{kJ/mol}$ $\Delta H = -286 \text{kJ/mol}$
	1 - $2C_{(s)} + 3H_{2(g)} \rightarrow C_2H_{6(g)}$ 2 - $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$ 3 - $H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(\ell)}$: $\Delta H = -86 \text{kJ/mol}$ $\Delta H = -394 \text{kJ/mol}$ $\Delta H = -286 \text{kJ/mol}$ $\Delta H = -286 \text{kJ/mol}$
C2H6(g) +	1 - $2C_{(s)} + 3H_{2(g)} \rightarrow C_{2}H_{6(g)}$ 2 - $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$ 3 - $H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_{2}O_{(\ell)}$ $\frac{7}{2}O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_{2}O_{(\ell)} \Delta H = \frac{1}{2}O_{(\ell)} \Delta H$: $\Delta H = -86 \text{kJ/mol}$ $\Delta H = -394 \text{kJ/mol}$ $\Delta H = -286 \text{kJ/mol}$ $\Delta H = -286 \text{kJ/mol}$
C ₂ H _{6(g)} +	1 - $2C_{(s)} + 3H_{2(g)} \rightarrow C_{2}H_{6(g)}$ 2 - $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$ 3 - $H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_{2}O_{(\ell)}$ $\frac{7}{2} O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_{2}O_{(\ell)} \Delta H = \frac{1}{2} O_{(\ell)} \Delta H$	5) مستعینا بالمعادلات الکیمیائیة الحراریة التالیة: ΔH = - 86 kJ/mol ΔH = - 394 kJ/mol ΔH = -286 kJ/mol = ? احسب حرارة التفاعل التالي:
C2H6(g) +	1 - $2C_{(s)} + 3H_{2(g)} \rightarrow C_{2}H_{6(g)}$ 2 - $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$ 3 - $H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_{2}O_{(\ell)}$ $\frac{7}{2} O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_{2}O_{(\ell)} \Delta H = \frac{1}{2} O_{(\ell)} \Delta H$: $\Delta H = -86 \text{kJ/mol}$ $\Delta H = -394 \text{kJ/mol}$ $\Delta H = -286 \text{kJ/mol}$ $\Delta H = -286 \text{kJ/mol}$

(62)	التوجيه الفني العام للعلوم – بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) – 2024 / 2025
	6) احسب حرارة تكوين أول أكسيد الكربون CO
	$C_{(S)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{(g)}$ $\Delta H = \Delta H_{FCO_2} = ???$
	إذا علمت أن:
	(1) $C_{(S)} + O_{2(g)} \longrightarrow CO_{2(g)} \Delta H_1 = -393.5 \text{ kJ/mol}$
	(2) $CO_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{2(g)}$ $\Delta \mathbf{H} = -283 \text{ kJ/mol}$
	رارة تكوين ثاني كبريتيد الكربون CS_2 من المعلومات الآتية:
	1) $CS_{2(l)} + 3O_{2(g)} \longrightarrow CO_{2(g)} + 2SO_{2(g)}$ $\Delta H_1 = -1075.2 \text{ kJ/mol}$
	2) $C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)}$ $\Delta H_2 = -393.5 \text{ kJ/mol}$
	3) $S_{(s)} + O_{2(g)} \longrightarrow SO_{2(g)}$ $\Delta H_3 = -294 \text{ kJ/mol}$
	الحل: المعادلة المطلوبة هي معادلة تكوين CS ₂ من عناصره الأولية.
	$C_{(s)} + 2S_{(s)} \longrightarrow \overline{CS_{2(1)}}$ $\Delta H = \Delta H_{f_{CS_2}} = ????$
	/ 2/2
	** (I, Z, * o
	99/16 6 000

السؤال الثامن: قارن بين كل مما يلي

1

التفاعلات الماصة للحرارة	التفاعلات الطاردة للحرارة	وجه المقارنة
		اشارة ΔH (موجبة – سالبة)

-2

∆ H <0	$\Delta H > 0$	التغير في الإنثالبي وجه المقارنة
		نوع التفاعل

-3

غاز ثاني اكسيد الكربون	الصوديوم الصلب	وجه المقارنة
		المحتوي الحراري
		(صفر - لا يساوي صفر)

-4

الماس	الجرافيت	وجه المقارنة – مستعينا بالمعادلة $ m C_{(diamond)} ightarrow C_{(graphite)} , \Delta H =$ - $1.9~kJ$
		المحتوي الحراري (أكبر – اقل)

5

$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$	$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(l)}$	المقارنة
		نوع التغير الحراري
		(احتراق قياسية – تكوين قياسية)

- 6

$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)} + 393.5 \text{ kj}$	$C_2H_{6(g)} + 86 \text{ kj} \rightarrow 2C_{(s)} + 3H_{2(g)}$	وجه المقارنة
		نوع التفاعل
		إشارة H∆

التوجيه الفني العام للعلوم - بنك أسئلة الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) - 2024 / 2025

7- التفاعل التالي يمثل حرارة التكوين القياسية لغاز ثاني أكسيد الكبريت:

$$S_{(s)} \; + \; O_{2(g)} \to SO_{2(g)} + 296 \; kJ$$

: فإذا علمت أن S = 32 فإن

احتراق g من الكبريت	احتراق 32g من الكبريت	وجه المقارنة
		قيمة ∆H

$\boxed{\mathbf{C}_{(\mathrm{s})} + \mathbf{O}_{2(\mathrm{g})} \to \mathbf{CO}_{2(\mathrm{g})}}$	$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(l)}$	وجه المقارنة
		نوع التغير الحراري
		(احتراق قياسية – تكوين قياسية)

-8

حرارة التكوين القياسية	حرارة الاحتراق	وجه المقارنة مستعينا بالمعادلة
لأكسيد الالومنيوم	القياسية للألومنيوم	$4A\ell(s) +3O_2(g) \rightarrow 2A\ell_2O_3(s)$, $\Delta H^o = -3340 \text{ kJ}$
		القيمة بالكيلو جول/مول

(65)	2025 / 2024 -	مي - (الجزء الأول) -	ف الحادي عشر العا	ئلة الكيمياء - الص	رم – بنك أس	به الفني العام للعلو	التوجير)	(معتمد)
	<u>:</u>	لتفاعلات التالية	رارية الموزونة لا	كيميائية الح	لعادلات ال	سع: اكتب ال	ـؤال التا	<u>الس</u>
	. 90.37kJ	NC) يحتاج إلى ا	كسيد النيتريك ((ِن 1mol من أ	سجين لتكوّ	روجين مع الأك 	تفاعل النتر	1.ئ
	. 394 kJ	ة حرارية مقدارها	لِية وانطلاق طاق	من عناصره الأو	ىن CO ₂ ن	ي أكسيد الكربو	تكوين ثان	2.د
	.(727 kJ)	ن الحرارة مقدارها	ناماً يعط <i>ي</i> كمية ه	CH3) احتراقا ن	نول (OH	1m من الميثا	احتراق ol	1.3
	(2	$\Delta H_f^0 = -822 \text{kJ}$	علما بأن (mol/	(Fe ₂ O ₃) II	يد الحديد [، واحد من اكس	تكون مول	4. د
.283 kJ	ــــــــــــــــــــــــــــــــــــــ	علما بأن الطاقة ا	رة من الاكسجين	ـــــــــــــــــــــــــــــــــــــ	عسيد الكرب <u>و</u>	 مول من اول ان	. احتراق م	5
ΔH =	= -395 kJ/mo	رونية علما بأن le	S من عناصره ال	يد الكبريت O ₃	ر ثالث أكس	ر واحد من غاز مان عاز	تكوين مول	6.ن
 باعل	ــــــــــــــــــــــــــــــــــــــ	 ، أكسيد الكربون ع	التكوين غاز ثاني		•	أول أكسيد الناوة التفاعل تساوة		
 حبة 890 kJ	ئل الطاقة المصاد	CO2 والماء السا	ب)، <mark>لتكوي</mark> ن غاز) (مرکب عضوہ	يثان CH4	ل من غاز الم	احتراق مو	1.8
			: 835 kJ ²	لطاقة المصاحب	القياسية، ا	ق الألومنيوم ا	حرارة احترا	9
		: 1670	k.J أنمنطلقة	الألمنيوم، الطاق	بة لأكسيد	لتكوين القياسب 	. حرارة ا	10

(66)	لأول) – 2024 / 2025	شر العلمي ـ (الجزء ا	مياء - الصف الحادي ع	م للعلوم — بنك أسئلة الكيد	التوجيه الفني العام
لتحقق خريطة	ا في المربع المناسب	ا أمامك بوضعھ	العلمية الموجودة	ستعينا بالمفاهيم	الخطط الفارغ م
					: p -
ة من محيطة	يمتص النظام الحرار	$\Delta H > 0$	ة إلى محيطة	يطرد النظام الحرارة	$\Delta H < 0$

يطرد النظام الحرارة إلى محيطة $\Delta H > 0$ يمتص النظام الحرارة من محيطة

بة) > $ m A~(~$ (للمواد المتفاعلة)	للمواد النات $\Delta {f H}$	اعلة)	ا $<$ $ m H$ (للمواد المتف	H∆ (للمواد الناتجة)
	أنواع التفاعلات في الكيمياء الحرارية			
				_
			'	

انتهت الأسئلة ونرجو لكم التوفيق والنجاح

