

هاتف 60090309 اگریک براه اقت او B-11						
صفحة	المتوى	القسم				
3	الـــدرس الأول (1-1) طبيعة الخلايا اللإلكتروكيميائية	الوحدة السرابعة				
9	السدرس الثاني (2-1) وزن معادلات الأكسدة والاختزال	الكيمياء الكهربتئية				
12	الدرس الثالث: (1-3) الفسسلايا الإلكتروكيميائيسة	الفصـــــل الأول تفاعلات الأكسدة والاختزال				
15	الـــدرس الأول (2-1)أنصـــاف الخلايا وجهود الخـــــلايا	الفصــــل الثاني				
38	الدرس الثاني : (2-2) الخلايــا التحليلية الإلكترولتيـــة	الخلايا الإلكتروكيميائية				
44	السدرس الأول (1-1) المركبات العضوية (الهيدروكربونية)	الوحدة الخامسة				
46	السدرس الثاني (1-2) الهيدروكربونات المشبعة(الألكانات)	المركبات الهيدروكربونية الفص				
51	الدرس الثالث :(3-1) الهيدروكربونات الغير مشبعة(الألكينات)	الهيدروكربونات الأليفاتية				
59	أهم المصطلحات والتعريف	بنــك الملومــــات				
51	الاختبارات القصيرة (الورقة التقويمية الأولى)	قســــــــــــــــــــــــــــــــــــ				
63	الاختبارات القصيرة (الورقة التقويمية الثانية)	القصيــــرة				
65	حلول وإجابات الاختبارات القصيسرة الأولى والثانية					
66	نمـــوذج الاختبار النهائي الأول	<u>6 — — — — </u>				
68	حـــل الاختبار النهائـــي الأول	الاختبــــارات				
70	نمسوذج الاختبار النهائي الثاني	النهائي				
74	حسل الاختبار النهائي الثاني					
سلسلة مذكرات اقرأ المناب المنا						
ملول وإجابات الاختبار النهائي الأولى والثانية في وهي والثانية في وهي وهي وهي وهي وهي وهي وهي وهي وهي وه						
عود واتساب کود صفحة بارکود قناة اقرأ مذکرات اقرأ الانستجرام کود سنك الاسئلة المعليمية						

التكافؤات الشائعة لبعض الشقوق الأيونية البسيطة

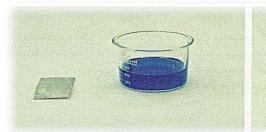
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
الصيغة	الأنيونات	الصيغة	الكاتيونات
O^{2-}	الأكسيد	Li ⁺	الليثيوم
F -	الفلوريد	Na ⁺	الصوديوم
Cl-	الكلوريد	K ⁺	البوتاسيوم
Br ⁻	البروميد	$\mathbf{A}\mathbf{g}^{\scriptscriptstyle{+}}$	فضة
I.	اليوديد	Mg^{2+}	المغنيسيوم
S ⁻²	الكبريتيد	Ca ²⁺	الكالسيوم
N ⁻³	النيتريد	Ba ²⁺	الباريوم
P ⁻³	الفوسفيد	Co ²⁺	الكوبلت II
		Pb ²⁺	رصاصII
		Cu ⁺	النحاسI
		Cu ²⁺	النحاسII
		Zn ²⁺	خارصین
		Fe ²⁺	الحديد
		Fe ³⁺	الحديد
		Al ³⁺	الألمنيوم

**الأيونات متعددة الذرات وتكافؤها:

ات ثلاثية التكافؤ	مجموعا	نائية التكافؤ	مجموعات ث	مجموعات أحادية التكافؤ الجموعة الصيغة OH- ميدروكسيد NH4+ أمونيوم		
الصيغة	الجموعة	الصيغة	الجموعة	الصيغة	الجموعة	
PO ₄ ³⁻	الفوسفات	CO_3^{2-}	الكربونات	OH.	هيدروكسيد	
		SO ₄ ² -	الكبريتات	NH_4^+	أمونيوم	
		SO ₃ ² -	الكبريتيت	NO ₃ -	نيترات	
	4	CrO ₄ ² -	الكرومات	NO ₂ -	نيتريت	
	•			CH ₃ COO	الاسيتات	
			-13	HCOO-	فورمات	
				CN-	السيانيد	
	-			ClO ₃ -	كلورات	
				HCO ₃ -	کربونات هیدروجین <i>ي</i>	
	A4-	1	30	HSO ₄ -	كبريتات هيدروجيني	

ىلتوصيل - 90 30 90 600

سلسلة مذكرات اقرأ {متوسط و ثانوى}


الوحدة الرابعة (الكيمياء الكهربائية) الفصل الأول: تفاعلات الأكسدة والاختزال الدرس الأول (1–1) طبيعة الخلايا الإلكتروكيميائية

السؤال الأول :اكتب بين القوسين الاسم أو المصطلح العلمي الدال على كل مما يلي:

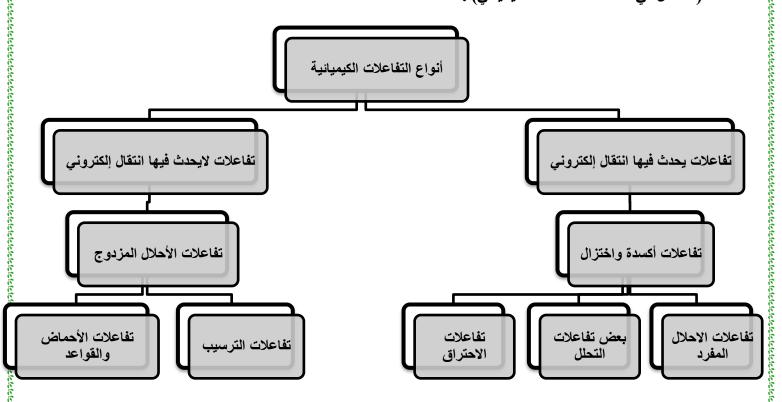
(الكيمياء الكهربائية)	فرع من الكيمياء الفيزيائية يهتم بدارسه التغيرات الكيميائية التي تنتج او تمتص تيار كهربائي	-1
	تيار كهربائي	
(عملية الاكسدة)	عملية يتم فيها فقد الكترونات في التفاعل الكيميائي.	
(العامل المفترل)	المادة التي تفقد الكترونات ويحدث لها زيادة بعدد التأكسد.	
(عملية الأختزال)	عملية يتم فيها اكتساب الكترونات في التفاعل الكيميائي.	-4
(العامل المؤكسد)	المادة التي تكتسب الكترونات ويحدث لها نقص بعدد التأكسد.	
(تفاعلات الاكسدة والاختزال)	تفاعلات يحدث فيها انتقال الكترونات من أحد المتفاعلات الى الاخر.	
(عدد التأكسد)	العدد الذي يمثل الشحنة الكهربائية الموجبة أو السالبة التي تحملها ذرة العنصر	-7
, ,	في المركب أو الأيون.	

السؤال الثاني: أجب عما يلي:

أثناء قيام معلم الكيمياء بأداء الحصة في المختبر عن الخلايا الجلفانية قام بعرض تجربة وضع قطب من الخارصين في محلول كبريتات النحاس II, وسأل المعلم طلابه عن تفسير المشاهدات التالية:

التفسير	اللاحظة
لتأكسد ذرات الخارصين متحولة إلى كاتيون Zn^{2+} تحل محل كاتيونات النحاس في المحلول $Zn o Zn^{2+} + 2 m \acute{e}$	1- يتآكل سطح قطب الخارصين.
لاختزال كاتيونات النحاس Cu^{2+} (ذات لون أزرق) بالمحلول متحولة ذرات نحاس (بني غامق) على سطح لوح الخارصين $\mathrm{Cu}^{2+} + 2\acute{\mathrm{e}} o \mathrm{Cu}$	2- تتكون طبقة لونها بني غامق على سطح شريحة الخارصين. 3- يبهت لون المحلول الأزرق تدريجياً حتى يختفي كلياً بعد بضع ساعات.

الاستنتاج: الإلكترونات انتقلت من ذرات الخارصين إلى كاتيونات النحاس (تفاعل أكسدة واختزال)


$$Zn \rightarrow Zn^{2+} + 2\acute{e}$$

 $Cu^{2+} + 2\acute{e} \rightarrow Cu$

$$Zn_{(s)} + Cu^{2+}_{(aq)} \rightarrow Cu_{(s)} + Zn^{2+}_{(aq)}$$

سلسلة مذكرات اقرأ (متوسط و ثانوي)

ملاحظة هامة:

- يمكن التأكد من وجود كاتيونات الخارصين Zn^{2+} في المحلول الناتج بإضافة محلول هيدروكسيد الصوديوم، قطرة بعد قطرة ، إلى المحلول الناتج ، فيتكون راسب أبيض من هيدروكسيد الخارصين $Zn(OH)_2$.
 - تعره بند تعره ؛ إلى المعنول الناسط ؛ لينتول راسب ابينس من لميارونسية العارضين 2/11/10) (2) الفلز الأكثر نشاطا (الأعلى في متسلسلة النشاط الكيميائي) يتأكسد ويحل محل كاتيونات الفلز الأقل نشاطاً (الأسفل في متسلسلة النشاط الكيميائي) .

قواعد حساب عدد التأكسد

(1) عدد تأكسد أي عنصر في حالته النقية يساوي صفراً كما في:

 $O_3 - P_4 N_{2-} F_{2-} H_2 - Cl_2 - O_2 - Li - Na - K - Mg - Ca - Ba$

ملاحظة (العناصر النقية هي التي تتكون من نوع واحد من الذرات بغض النظر عن عددها)

(2) عدد التأكسد للأيون يساوي شحنته رقماً وإشارة

CO ₃ ² -	PO ₄ ³ -	S ²⁻	OH-	N ³⁻	NO ₃ -	NH4 ⁺	Al ³⁺	<u>الأيون أو الذرة</u>	مثال:
-2	-3	-2	1	-3	-1	+1	+3	<u>عدد تأكسد</u>	

(3)

عدد تأكسد (مركبات متعادلة) H₂O · NH₃

(4)

(4

للتوصيل - 90 30 90 600

سلسلة مذكرات اقرأ {متوسط و ثانوى}

Li-Na-K عناصر المجموعة الأولى في جميع مركباتها عدد تأكسدها (1+) كما في نيترات البوتاسيوم KNO₃، أكسيد الليثيوم Li₂O₀، أكسيد الليثيوم ${
m Mg-Ca}$ عناصر المجموعة الثانية في جميع مركباتها عدد تأكسدها (2+) كما في كربونات المغنسيوم ،MgCO3 كلوريد الكالسيوم يكما في كربونات المغنسيوم عدد تأكسدها (3+) الألومنيوم Al في جميع مركباته كما في فوسفات الألومنيوم AlPO4 الفلور F في جميع مركباته عدد تأكسدها (1-) كما في: $\overline{\mathrm{MgF}_2}$ فلوريد المغنسيوم $\overline{\mathrm{CaF}_2}$ فلوريد الكالسيوم $\overline{\mathrm{NaF}}$ فلوريد المغنسيوم فلوريد المغنسيوم عدد تأكسد الهيدروجين يساوى (+1): أمثلة: (الماء H₂O ، هيدروكسيد الصوديوم NaOH، الأمونيا NH₃ ، حمض النيتريك HNO₃ عدا حالة واحدة يكون عدد تأكسد الهيدروجين فيها (-1) وذلك إذا اتحد مع عنصر أقل سالبية كهربائية فيه كما في هيدريدات الفلزات كمافى: (MgH_2 هيدريد المغنسيوم $A\ell H_3$ هيدريد الألومنيوم CaH_2 هيدريد الكالسيوم NaH_3 عدد تأكسد الأكسجين في معظم حالاته يساوي (-2): (MgO اكسيد الصوديوم Na_2O - اكسيد المغنسيوم H_2O أمثلة: (الماء باستثناء الحالتين: أ- البير وكسيدات رفوق الأكاسيد)يكون عدد تأكسد الأكسجين فيها ، هو (-1) امثلة (فوق اكسيدالهيدروجين H_2O_2 - فوق اكسيد الصوديوم Na_2O_2 -فوق اكسيد المغنسيوم H_2O_2) ب-إذا اتحد الأكسجين مع الفلور . \mathbf{OF}_2 يكون عدد تأكسد الاكسجين هو (+2) في مركب فلوريد الأكسجين ${
m C}_{2}$ ىكون عدد تأكسد الاكسجين هو(+1) في مركب ثنائي فلوريد الأكسجين عدد تأكسد الهاليدات (Cl, Br, I) مع الفلزات عدد تأكسدها (1-)كما في: يوديد البوتاسيوم KI ، بروميد الصوديوم NaBr، كلوريد الكالسيوم باستثناء الحالة التالية: عند اتحاد الهاليدات (Cl, Br, I) مع الأكسجين ،الفلور يتم حساب عدد تأكسدها بطريقة الجمع الجبري كما في IO_4 'ClO₃: (5) المجموع الجبري لأعداد التأكسد لأيون عديد الذرات (الايون المركب) تساوي شحنته رقما وإشارة IO4 ClO₃ 1+(2-X 4)=-1Cl+(2-X 3)=-1I - 8 = -1Cl-6=-1Cl = +5

(IX + I) + P + (2-X 4) = 0 (IX + I) + P + (2-X 4) = 0 Mn + (ي المركب المتعادل تساوي صفر	$_{\parallel}^{(6)}$ الجموع الجبري لأعداد التأكسد لجميع الذرات ف				
Mn + (-7)=0 Mn = +5 Mn = +7 Mn = +7 Mn = +7 Mn = +8 Mn	$ m H_3PO_4$ في $ m H_3PO_4$	احسب عدد تأكسد المنجنيز (Mn) في KMnO ₄				
المدال الثاني : أكمل الفراغات في الجمل والعبارات الثانية بما يناسبها علميا: 1. في تفاعلات الاكسدة و الاختزال أنا يقص عدد التكسد للعضري يون عاملاً مؤكسد 2. عند التأكسد الاكسيون في المركب ((CO2) يساوى 2 بينما في المركب ((K2O2) يساوى 1	5 = 0 $(3X + 1) + P + (2-X 4) = 0$	(1X +1)+ Mn +(2-X 4)=0				
السؤال الثالث: أكمل الفرافات في الجمعل والعبارات التالية بما يناسبها علميا: 1- في تفاعلات الاكسدة والاخترال إذا يزيد. عدد التكسد للعنصر يكون عاملاً مخترلاً 2- في تفاعلات الاكسدة والاخترال إذا يقص عدد التكسد للعنصر يكون عاملاًوقسدا						
1- في تفاعلات الاكسدة و الاختزال إذا . إنه. عدد التأكسد للعنصر يكون عاملاً مختز لا 2- في تفاعلات الاكسدة و الاختزال إذا . أنفس عدد التأكسد للعنصر يكون عاملاً هؤكسها 3- عدد التأكسد للخصيين في المركب (CO2) يساق	,	"				
 2. في تفاعلات الاكسدة و الاختزال إذا نقص عدد التناكسد للعنصر يكون عاملاًوكسداً 3. عدد التأكسد الأكسجين في العرب (CO₂) بيساوي2 بينما في العركب ((CO₂) بيساوي4 4. عدد التأكسد للعديد في العربية ((CO₂) إيساوي4						
 2. عد التأكمد للأكسجين في المركب (CO2) بساوى 2 ببنما في المركب (K2O2) بساوى 1 4. عد التأكمد للخديد في الاميغة (Fe(H₂O)₆) الساوى 4						
4- عدد التأكمد للحديد في الأبون **[qe(H ₂ O) ₆] يساوي+2 5- عدد التأكمد للحديد في الصيغة (Re(NO ₃) بساوي+2		· · · · · · · · · · · · · · · · · · ·				
 ح. عدد التأكمد للحديد في الصبغة (KAFe(NO₃) مساوي		· · · · · · · · · · · · · · · · · · ·				
 7- نصف التفاعل التالي: 2n → Zn O² بمثل عملية Zhae		- · · · · · · · · · · · · · · · · · · ·				
 8. المعادلة التالية: 'Clo → Clo → Clo + Cl. → Clo → Clo + Cl. → Charl litrid التالية: 'Clo → Co + 2Co³	<mark>اكتساب</mark> الكترونات .	يصحبه MnO $_4^- ightarrow ext{MnO}_2$ يصحبه $_{f 6}$				
- طبقا للتفاعل التالي: - 10 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 3	لية <u>اكسده</u>	يمثل عما ${ m Zn} ightarrow { m Zn} { m O_2}^{2^2}$ يمثل عما 7				
10- يلزم لإتمام التغير التالي 2N → N2 وجود عاملوكسد						
11- التغير الكيمياتي التالي 2 Cd → Cd(OH) بيتاج في إتمامه إلى عامل مؤكسة. 12- عدد التأكسد للفوسفور في المركب K4P2O7 يساوي 5		•				
12 عدد التأكسد للقوسفور في المركب NH ₂ OH بساوي ±		* ' '				
13. عدد تأكسد النيتروجين في المركب NH2OH بساوي 1						
14. عدد التأكسد للكبريت في تيوكبريتات الصوديوم (Na ₂ S ₂ O ₃) يساوي2		·				
15- عدد تأكسد الهيدروجين في هيدريد الصوديوم NaH يساوى1	 *	₹				
16. نصف التفاعل التالي - Fe²+ → Fe³+ + e³ الصدة الصدة الصدة التفاعل التالي : Cr² بعتبر عملية الفترال ClO₄ → ClO₄ ClO₃ بمفترال 18 ClO₄ → ClO₃ التغير الكيميائي التالي : Co³ يعتبر عملية الفترال SO₂ كمامل مفترال 20 SO₂ كمامل مفترال SO₂ يسلك SO₂ للتفاعل : SO₂ + Cr³ → SO₂ كمامل مفترال 20 التغير الكيميائي التالي : SO₂ + Cr³ + SO₄ ← Cr³ → MnO₂ كمامل مفترال 12 التغير الكيميائي التالي: MnO₄ → MnO₂ MnO₂ كمامل افترال 12 التغير الكيميائي التالي: MnO₄ → MnO₂ MnO₂ كمامل افترال 12 السؤال الرابع : ضع علامة (√) في المربع المقابل للإجابة الصحيحة التي تكمل كلا من الجمل التالية : 1 جميع التغيرات التالية تتم عند وضع شريحة من الفارصين في مطول مائي لكبريتات الناس على طاقة كهربائية التكون طبقة بنية على سطح شريحة الفارصين كين الحصول على طاقة كهربائية اليزداد تركيز كاتبونات 2π² كرا كيتات الناس الانتحاس الانتحاس التعدث جميع التغيرات التالية، عدا واحدة: اليزداد تركيز كاتبونات 2π² كرا كين أحد المركبات التالية : 1 كورداد تركيز كاتبونات 2π² كا كوردات التالية : 1 كورداد تركيز كاتبونات 2π² كوردات التالية : 1 كورداد تركيز كاتبونات 2π² كوردات التالية : 1 كورداد تركيز كاتبونات 2π² كورداد التاكميد الأكبريت يساوي 1 في أحد المركبات التالية : 1 كورداد تاكميد النيتروجين في الأيون 10 كورداد التاكيد : 1 كورداد التاكيد كورداد التاكيد كورداد التاكيد كورداد التاكيد كورداد كورد كورداد ك	 ;	* ·				
		, -				
18- نصف التفاعل التالي : ClO ₃ → ClO ₃		"				
19- التغير الكيميائي التألي : SO ₂ → SO ₂ يحتاج إتمامه إلى عامل مفتزل 20- يسلك SO ₂ في التفاعل : SO ₂ + Cr ₂ O ₇ ² → Cr ³⁺ + SO ₄ ²⁻ كعامل مفتزل 21- التغير الكيميائي التألي: MnO ₄ → MnO ₂ يعتبر مثالاً على عملية اخترال السؤال الرابع : ضع علامة (√) في المربع المقابل للإجابة الصحيحة التي تكمل كلا من الجمل التألية : 1- جميع التغيرات التالية نتم عند وضع شريحة من الفارصين في مطول مائي لكبريتات النحاس II عدا واحدة: يبهت لون المحلول الأزرق تدريجيا حتى يختفي كليا						
-20 يسلك SO ₂ + Cr ₂ O ₇ ²⁻ → Cr ³⁺ + SO ₄ ²⁻ : SO ₂ bold		-				
- التغير الكيمياني التالي: MnO₄ → MnO₂ بعتبر مثالاً على عملية MnO₄ → MnO₂ MnO₄ → MnO₂ Mnoȝ Mnoȝ May Maly May Maly - جميع التغيرات التالية تتم عند وضع شريعة من الخارصين في محلول مائي لكبريتات النحاس اا عدا واحدة: يبهت لون المحلول الأزرق تدريجيا حتى يختفي كلياً		# #				
السؤال الرابع : ضع علامة (√) في المربع المقابل للإجابة الصحيحة التي تكمل كلا من الجمل التالية : 1 - جميع التغيرات التالية تتم عند وضع شريعة من الخارصين في محلول مائي لكبريتات النحاس ال عدا واحدة: □ يبهت لون المحلول الأزرق تدريجيا حتى يختفي كلياً □ يتكون طبقة بنية على سطح شريحة الخارصين 2 - عند غمر شريعة من الخارصين في محلول كبريتات النحاس ال، تعدث جميع التغيرات التالية، عدا واحدة: □ يزداد تركيز كاتيونات 2m² كي المحلول. □ يزداد تركيز كاتيونات 2m² كي المحلول. □ يزداد تركيز كاتيونات 2m² كي المحلول. □ تنتج طاقة حرارية □ OF2 BaO2 ☑ O2F2 □ OF52 BaO2 ☑ O2F2 □ H2SO3 □ H2SO3 □ H2SO3 □ SO3 □ SO3 □ SO3 □ SO3		*				
1- جميع التغيرات التالية تتم عند وضع شريعة من الفارصين في محلول مائي لكبريتات النحاس ال عدا واحدة: □ يبهت لون المحلول الأزرق تدريجيا حتى يختفي كلياً □ تتكون طبقة بنية على سطح شريحة الخارصين 2- عند غمر شريعة من الفارصين في معلول كبريتات النحاس ال، تعدث جميع التغيرات التالية، عدا واحدة: □ يزداد تركيز كاتيونات 2n+2 في المحلول. □ يزداد تركيز كاتيونات 2u+2 في المحلول. □ يزداد تركيز كاتيونات 4u-2 في المحلول. □ تنتج طاقة حرارية □ Cu+2 في أحد المركبات التالية: □ OF2 BaO2 ✓ O2F2 □ O2F2 □ H2SO3 □ H2SO3 □ H2SO3 □ SO3 □		. "				
□ يبهت لون المحلول الأزرق تدريجيا حتى يختفي كلياً ☑ يمكن الحصول على طاقة كهربائية □ تتكون طبقة بنية على سطح شريحة الخارصين □ يتأكل سطح شريحة الخارصين 2- عند غمر شريعة من الخارصين في محلول كبريتات النحاس II، تحدث جميع التغيرات التالية، عدا واحدة: □ يزداد تركيز كاتيونات 2n+2 في المحلول. □ يتأكل سطح شريحة الخارصين ☑ يزداد تركيز كاتيونات 2u+2 في المحلول. □ تنتج طاقة حرارية ٥- عدد التأكسد للأكسيجين يساوي+ 1 في أحد المركبات التالية: □ OF2 □ O2F2 □ +- عدد تأكسد الكبريت يساوي(+ 2)في أحد المركبات التالية: □ H2S2O3 □ SO3 □ SO3 = عدد تأكسد النيتروجين في الأيون NO3 ** NO3** هو أحد ما يلي : 3						
ا تتكون طبقة بنية على سطح شريحة الخارصين و يتاكل سطح شريحة الخارصين و عند غمر شريحة من الخارصين في معلول كبريتات النحاس ال، تعدث جميع التغيرات التالية، عدا واحدة: ا يزداد تركيز كاتيونات 2n+² في المحلول. التأكيد الخارصين و كاتيونات 4cu+² في المحلول. التأكيد التأكيد للأكسيجين يساوي+ 1 في أحد المركبات التالية: MnO₂ □ OF₂□ BaO₂ ☑ O₂F₂□ □ O₂F₂□ □ H₂SO₃ □ □ OF₂O₃ □ H₂SO₃ □ H₂SO₃ □ H₂SO₃ □ H₂SO₃ □ SO₃ □ SO₃ □ SO₃ □ SO₃ □ SO₃ □ الكبريت يساوي الأيون NO₃ أحد ما يلي :	•					
- عند غمر شريعة من الفارصين في معلول كبريتات النعاس II، تعدث جميع التغيرات التالية، عدا واحدة: يزداد تركيز كاتيونات 2n+2 في المحلول. يزداد تركيز كاتيونات 4u+2 في المحلول. د عدد التأكسد للأكسيجين يساوي+1 في أحد المركبات التالية: MnO₂ □ OF₂□ BaO₂ ✓ O₂F₂□ -4 عدد تأكسد الكبريت يساوي(+2)في أحد المركبات التالية : H₂SO₃ □ H₂SO₃ □ H₂SO₃ □ SO₃ □ -5 عدد تأكسد النيتروجين في الأيون NO₃ ° NO₃ ° هو أحد ما يلي :						
ا يزداد تركيز كاتيونات 2n ⁺² في المحلول. ا يزداد تركيز كاتيونات 2n ⁺² في المحلول. ا يزداد تركيز كاتيونات 4u ⁺² في المحلول. ا 3 Cu ⁺² كاتيونات Cu ⁺² في المحلول. ا 4 Cu ⁺² كاتيونات						
$lackbox{ \ Cu^{+2}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $						
OF_2		Alaman and a second a second and a second an				
MnO_2 □ OF_2 □ BaO_2 ✓ O_2F_2 □ O_2F_2 □ O_2F_2 : O_2F_2 □ O		-				
-4 عدد تأكسد الكبريت يساوى(+ 2) في أحد المركبات التالية : H_2SO_3 \square $H_2S_2O_3$ \square $H_2S_2O_3$ \square SO_3		* *				
H ₂ SO ₃ □ H ₂ S ₂ O ₃ □ SO ₃ □ SO ₃ □ SO ₃ □						
5- عدد تأكسد النيتروجين في الأيون NO ₃ - هو أحد ما يلي :	4- عدد تأكسد الكبريت يساوى(+ 2)في أحد المركبات التالية :					
	$H_2SO_3 \square H_2S_2O_3 \square$	$H_2S \square$ SO ₃ \square				
(+5) ✓ (+1) □ (-5) □ (-1) □		مدد تأكسد النيتروجين في الأيون $\mathrm{NO_{3}^{-}}$ ، هو أحد ما يلي -5				
`	(+5) ✓ (+1)□	(-5)□ (-1)□				

ىلتوصيل - 90 30 90 600

سلسلة مذكرات اقرأ {متوسط و ثانوى}

:	1) هو أحد ما يا	ساوی (- ا	ممممممممممممممممم تأكسد للهيدروجين ي	م المركب الذي فيه عدد الـــــــــــــــــــــــــــــــــــ
H_2SO_4 \square			MgH ₂ ✓	H ₂ O □
	فراً وهو :	ن فیھا صد	بن عدد تأكسد الكربور	7- أحد المركبات التالية يكو
$C_6H_{12}O_6$ \square $C_2H_{12}O_6$	I ₄	Na	$_{12}CO_3$	CO_2
		يو :	ىتبر عملية اختزال وه	8- أحد التغيرات التالية يم
$\mathbf{I} \xrightarrow{\cdot} \longrightarrow \mathbf{I}_2 \square$			NO	$02^{-} \longrightarrow NO_{3}^{-} \square$
$\mathbf{Br} \longrightarrow \mathbf{Br}_2 \square$			SC	$SO_2 \longrightarrow SO_2$
	ھو :	لإتمامه و	تاج إلى عامل مؤكسد	9- أحد التغيرات التالية يد
$Mn^{2+} \longrightarrow MnO_4$			S	$SO_4^2 \longrightarrow SO_3 \square$
$\operatorname{Cr}_2\operatorname{O}_7^2\longrightarrow \operatorname{Cr}\operatorname{O}_4^2$ - \square				$BF_3 \longrightarrow BF_4$
		يلي هو :	ر أكسدة واختزال مما	"
$HCl + KOH \rightarrow KCl + H$	_	ATT (3)		$\rightarrow \text{CuCl}_2 + \text{H}_2\text{O} \Box$
$4HCl + MnO_2 \rightarrow MnCl_2 + 2H_2O$				
4HNO ₃ + Cu فإن جميع العبارات التالية	→ Cu(NC	J3) 2+ .		- 11
$\operatorname{Cu}(\operatorname{NO}_3)_2$ ناتج تفاعل الاختزال هو			ركسد .	🗖 يسلكُ الحمضُ كعاملُ مو
$ extstyle oxedsymbol{ iny NO}_2$ ناتج تفاعل الاختزال هو			حاس يفقد إلكترونين.	 □ المول الواحد من فلز النه
				11- أحد التفاعلات التالية لا
				$FeSO_4 + H_2 \square$
	Ag	NO ₃ -		$\begin{array}{ccc} AgC\ell & + & HNO_3 \checkmark \\ 2 & \longrightarrow & 2 & HC\ell \checkmark \end{array}$
16 HCl + 2 KN	$InO_4 \rightarrow$	5 Cl ₂	_	$2 \text{ MCl}_2 + 8 \text{ H}_2\text{O} \square$
			لتفاعل التالي:	
Cr^{3+} \square	H ⁺ ☑		Cr □	H ₂ \square
 اُمام العبارة الغيرصحيحة فيما يلى : 	يحة وعلامة (ارة الصد	مة (🗸 أمام العبا	السؤال الخامس: ضع علا
ــــــــــــــــــــــــــــــــــــــ				
(lay) لايمتل تفاعل اكسدة وإخترال (lay) ن اللون يبهت لون المحلول بسبب أكسدة				
	محامل کیریتات	مىين ۋ		کاتیونات النحاس ¹ 4 ⁺² 4- ینتج تیار کهربائی عند
$(rac{\mathbf{X}}{\mathbf{X}})$ النحاس $(rac{\mathbf{X}}{\mathbf{X}})$	معتون حبريتات			ينتج بيار خهرباي طد 5- التفاعل التالي +Na → Na
(\mathbf{X})				6- عدد تأكسد المنجنيز In
(X) (X)	(1+)(s)			 7- تأكسد الكروم Cr في -8 8- عدد التأكسد للهيدروجير
$(\sqrt{)}$		ساوی () في المركب BaO ب	9- عدد التأكسد للأكسجين
(X) (X)	يت ال		ا إلى $^{ ext{-}} ext{ClO}_3$ تفاعل $ ext{NH}_4^+ o ext{N}$	
ا يعتبر مثالاً لتفاعل أكسدة. (X)	$C_6H_{12}O_6$ ىىگر	وئي إلى •	في عملية البناء الض	$ m CO_2$ عملية تحول $ m CO_2$
ىلك $_{\mathrm{Br}}^{-}$ كعامل مؤكسد . $\left(\begin{array}{c} \mathbf{X} \\ \mathbf{V} \end{array} ight)$. $\mathbf{H_{2}O_{2}} + \mathbf{SO_{2}} ightarrow \mathbf{H_{2}SO_{2}}$				
· · · · · · · · · · · · · · · · · · ·	100	100	$2+3Cl_2 \rightarrow 2PCl_3$	
	$2\mathbf{H}_2\mathbf{O}_2 \to \mathbf{H}$	$[_2\mathbf{O} + \mathbf{O}_2$	ى في التفاعل التالي	16- ناتج عملية الاختزال
(X)	ביל	عامل مذ	BF ₃ → BF ₄ وجود	17- يلزم لإتمام التفاعل
arrerrer -	n <mark>nga</mark> nnannna	าลลลลลล	1	F (7 (
للتوصيل _ 90 30 90 600			متوسط و ثانوی}	سلسلة مذكرات اقرأ {

السؤال السادس :علل لما يلى تعليلا علمياً موضحا بالمعادلات :

(II) على سطح شريعة الفارصين عند غمرها بمحلول في محلول مائي لكبريتات النحاس (II) على سطح شريعة الفارصين عند غمرها بمحلول في محلول مائي لكبريتات النحاس ($\mathrm{Cu}^{2+}+2\mathrm{e}_{>}$ Cu^{2+}

-2 يبهت لون محلول كبريتات النحاس (II) الأزرق تدريجيا حتى يختفي كلياً بعد بضع ساعات من غمر شريحة خارصين فيه بسبب اختزال كاتيونات النحاس الزرقاء باكتسابه الكترونان الى ذرات نحاس بنية اللون $-2e^2+2e^2$

واكسدة ذرات الخارصين الى كاتيونات خارصين الشفافة

3- تأكل سطح شريعة الخارصين عند غمرها في محلول مائي لكبريتات النحاس(II)

 $Zn_{(s)} o Zn^{2+}_{(aq)} + 2e^-$ بسبب اكسدة ذرات الخارصين الى كاتيونات خارصين بفقدها الكترونان

4=التفاعل التالي HCl+NaOH→NaCl+H2O لا يعتبر من تفاعلات الأكسدة والاخترال.

لأنه لم يحدث انتقال الكترونات من أحد المتفاعلات الى الاخر ولم يتغير عدد تأكسد أي عنصر بالمتفاعلات أو لأنه لم يحدث انتقال الكترونات من أحد المتفاعلات الى الاخر ولم يتغير عدد تأكسد أي عنصر بالمتفاعلات أو H=+1 , Cl=-1 , O=-2 , Na=+1).

. عامل مختزل 2 عامل مختزل عامل مختزل. الكادميوم في التفاعل الكيميائي التالي 2

لان عدد تأكسد الكادميوم زاد من)صفر (الي) +2 (وفقد الكترونان أي تأكسد ويسلك كعامل مختزل.

عتبر عملية أكسدة $Fe2+\square$ Fe3++e- يعتبر عملية أكسدة -6

+3 فقد الكترون وزاد عدد تأكسده من +2 الى +2 الى كاتيون الحديد

السؤال السابع: حدد نوع العملية (أكسدة أو اخترال) من خلال المعادلات الموضحة

نوع العملية (أكسدة أو اختزال)	نصف التفاعل
أكسدة	$Fe \rightarrow Fe^{2+} + 2e^{-}$
أكسدة	$Na \rightarrow Na^+ + e^-$
أكسدة	$Al \rightarrow Al^{3+} + 3e^{-}$
اختزال	$Cu_{2+} + 2e^{-} \rightarrow Cu$
اختزال	$Ag_+ + e^- \rightarrow Ag$
اختزال	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

السؤال الثامن :حدد العامل المؤكسد والعامل المخترل باستخدام التغيرات في أعداد التأكسد فيما يلى:

العامل المفتزل	العامل المؤكسد	المعادلة
HCl	MnO ₂	$MnO_2 + 4 HCl \rightarrow MnCl_2 + 2H_2O + Cl_2$
Cu	HNO ₃	$Cu + 4HNO3 \rightarrow Cu (NO3)2 + 2 NO2 + 2H2O$
H ₂ S	HNO ₃	$3H2S + 2HNO3 \rightarrow 3S + 2NO + 4H2O$
Na	Cl ₂	$2Na + Cl_2 \rightarrow 2NaCl$
НІ	PbO ₂	$PbO_2 + 4HI \rightarrow I_2 + PbI_2 + 2H_2O$
PbSO ₄	PbSO ₄	$2PbSO_4 + 2H_2O \longrightarrow Pb + PbO_2 + 2H_2SO_4$
H ₂ O ₂	H ₂ O ₂	$2H_2O_2 \rightarrow 2H_2O + O_2$

الدرس الثاني (1-2)وزن معادلات الأكسدة والاغتزال بطريقة أنصاف التفاعلات (أيون– إلكترون) في الوسط الحمضي

خطوات وزن المعادلات بطريقة أنصاف التفاعلات(أيون_ إلكترون) في الوسط الممضى:

- 1- حدد أعداد التأكسد لجميع الذرات في المعادلة.
- 2- حدد العنصر الذي اختزل والعنصر الذي يتأكسد.
 - 3- اكتب نصفى تفاعل الأكسدة والاختزال.
- 4- وزن ذرات العناصر بالطريقة المعتادة عدا الأكسيجين والهيدروجين
- ن الهيدروجين بإضافة أيون (H^+) للطرف الاقل هيدروجين يساوي مقدار النقص -6
- 7- زُنَ الشَّحنَاتُ بِإِضَافَة الكترونَاتُ (-e) للطرفُ الاعلى بالشَّحنَة يساوي ٱلفرق في الشَّحنة
- 8- نوحد (نساوي) عدد الالكترونات المفقودة والمكتسبة بضرب نصفي التفاعل بالمعاملين المناسبين.
- 9- اجمع نصفى التفاعل بطرح المتشابه في الطرفين المختلفين ونجمع المتشابه اذا كانا في نفس الطرف.

زن نصف التفاعل التالى:

بطريقة أنصاف التفاعلات (الأيون –الإلكترون الجزئية) في الوسط الحمضي وماهو نوع التغير الحادث:

 $Cr_2O_7{}^{2\text{-}} \ \to \ Cr^{3\text{+}}$

$Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$	نزن الذرة المركزية
$Cr_2O_7^{2-} \rightarrow 2Cr^{3+} + 7H_2O$	نزن ذرات الاكسجين
$Cr_2O_7^{2-} + 14H^+ + \rightarrow 2Cr^{3+} + 7H_2O$	نزن ذرات الهيدروجين
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	نزن الشحنات

 $PbO_2 \longrightarrow Pb^{2+}$

${ m PbO_2} \qquad ightarrow \qquad { m Pb^{2+}}$	نزن الذرة المركزية
$PbO_2 \longrightarrow Pb^{2+} + 2H_2O$	نزن ذرات الإكسجين
$PbO_2 + 4H^+ \rightarrow Pb^{2+} + 2H_2O$	نزن ذرات الهيدروجين
$PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$	نزن الشحنات

$NO_3^- + I^- \rightarrow I_2 + NO$ السؤال الأول: المعادلة التالية: غير موزونة والمطلوب:

- 1- تحديد العامل المؤكسد والعامل المختزل.
- 2- وزن المعادلة بطريقة أنصاف التفاعلات في الوسط الحمضي.

العامل المؤكسد NO:	العامل المخترل. ` I	العوامل
NO_3 \rightarrow NO	$I^- \rightarrow I2$	انصاف التفاعلات
NO_3 \rightarrow NO	2I → I2	نزن الذرة المركزية
NO_3 \rightarrow $NO + 2H_2O$	2 I ⁻ → I 2	نزن ذرات الاكسجين
$4 \text{ H}^+\text{+ NO}_3^- \rightarrow \text{NO +}2\text{H}_2\text{O}$	2 I · → I 2	نزن ذرات الهيدروجين
$2x \ 4H^+ + NO_3^- + 3e^- \rightarrow NO + 2H_2O$	$3 \times 2I^- \rightarrow I2 + 2e^-$	نزن الشحنات
$8H^+ + 2NO_3^- + 6e^- \rightarrow 2NO + 4H_2O$	6I · → 3I2+6e ·	نوحد الشحنات
6I ⁻ → 3I2+6e ⁻	III For	الجمع والاختصار
$8H^+ + 2NO_3^- + 6e^- \rightarrow 2NO_3^-$	+4H ₂ O	300
$6I^- + 8H^+ + 2NO_3^- \rightarrow 2NO +$	$4H_2O + 3I_2$	

خطوات عملية الوزن:

✔ وزن الشحنة: بإضافة - e

وزن ذرات العنصر الذي تغير عددتأكسده

وزن ذرات الأكسجين: بإضافة H₂O

وزن ذرات الهيدروجين: بإضافة H+

 $\mathrm{Cr_2O_7^{2-}}$ + $\mathrm{Sn^{2+}}$ o $\mathrm{Cr^{3+}}$ + $\mathrm{Sn^{+4}}$: غير موزونة: غير موزونة

والمطلوب 1- تعديد العامل المؤكسد والعامل المفترل.

2- وزن المعادلة بطريقة أنصاف التفاعلات في الوسط الممضى.

العامل المؤكسد	العامل المفتزل Sn ⁺²	
$Cr_2O_7^{2-} \rightarrow Cr^{+3}$	$\mathrm{Sn}^{2+} \rightarrow \mathrm{Sn}^{+4}$	
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	$x3 Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$	
$3\mathrm{Sn}^{2+} \rightarrow 3\mathrm{Sn}^{4+} + 6\mathrm{e}^{-}$		
$\text{Cr}_2\text{O}_7^{2^-} + 14\text{H}^+ + 6\text{e}^- \rightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$		
$3Sn^{2+} + Cr_2O_7^{2-} + 14H^+ \rightarrow 2Cr^{3+} + 3Sn^{4+} + 7H_2O$		

السؤال الثالث: المعادلة التالية: غير موزونة:

 $C_2O_4{}^{2\text{-}} \quad + \quad MnO_4{}^{\text{-}} \quad \rightarrow Mn^{2\text{+}} \quad + \quad CO_2$

والطلوب 1- تحديد العامل المؤكسد والعامل المختزل.

2- وزن المعادلة بطريقة أنصاف التفاعلات في الوسط الحمضم

	<u> </u>	
العامل المؤكسد • MnO ₄	$ m C_2O_4^{-2}$ العامل المفتزل	
MnO_4 $\rightarrow Mn^{+2}$	$C_2O_4^{2-} \rightarrow 2CO_2$	
$2x 8H^{+} + 5e^{-} + MnO_{4}^{-} \rightarrow Mn^{2+} + 4H_{2}O$	$5 \text{ x} \text{C}_2\text{O}_4^{2-} \rightarrow 2\text{CO}_2 + 2\text{e}^{-}$	
$5C_2O_4^{2-} \rightarrow 10CO_2 + 10e^-$ $16H^+ + 10e^- + 2MnO_4^- \rightarrow 2Mn^{2+} + 8H_2O$		
$16H^{+} + 5C_{2}O_{4}^{2-} + 2MnO_{4}^{-} \rightarrow 2Mn^{2+} + 8H_{2}O + 10CO_{2}$		

 $Cr_2O_7^{2-} + C_2H_6O o C_2H_4O + Cr^{+3}$ + $C_2H_6O o C_2H_4O + Cr^{+3}$ + $C_2H_6O o C_2H_4O$

والمطلوب 1- تحديد العامل المؤكسد والعامل المختزل.

2- وزن المعادلة بطريقة أنصاف التفاعلات في الوسط الحمضي.

<u> </u>		
عامل المؤكسد	العامل المفترل C ₂ H ₆ O	
$\text{Cr}_2\text{O}_7^{2-} \rightarrow \text{Cr}^+$	$C_2H_6O \rightarrow C_2H_4O + 2H^+$	
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O_7^{3-}$	$O \qquad 3x \qquad C_2H_6O \rightarrow \qquad C_2H_4O + 2H^+ + 2e^-$	
$3C_2H_6O \rightarrow 3C_2H_4O + 6H^+ + 6e^-$ $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$		
$Cr_2O_7^{2-} + 8H^+ + 3C_2H_6O \rightarrow 3C_2H_4O + 2Cr^{3+} + 7H_2O$		

 MnO_4 - + HCl ightarrow Cl_2 + Mn^{2+} السؤال الخامس: المعادلة التالية: غير موزونة:

والمطلوب 1- تحديد العامل المؤكسد والعامل المختزل.

2- وزن المعادلة بطريقة أنصاف التفاعلات في الوسط الحمضي.

+7 -2 +1 -1 +2

 MnO_4 + HCl $\rightarrow Mn^{2+}$ + Cl_2

العامل المفترل -MnO ₄	العامل المؤكسد HCl	
MnO_4 $\rightarrow Mn^{2+}$	$\mathrm{HCl} o \mathrm{Cl}_2$	
MnO_4 $\rightarrow Mn^{2+}$	$2\text{HCl} \rightarrow \text{Cl}_2$	
MnO_4 $\rightarrow Mn^{2+}+4H_2O$ $2HCl \rightarrow Cl_2$		
$8H^+ + MnO_4^- \rightarrow Mn^{2+} + 4H_2O$	$2HCl \rightarrow Cl_2 + 2H^+ + 2e^-$	
$2x 5e^{-} + 8H^{+} + MnO_{4}^{-} \rightarrow Mn^{2+} + 4H_{2}O$ $5x 2HCl \rightarrow Cl_{2} + 2H^{+} + 2e^{-}$		
$10 e^{-} + 16H^{+} + 2MnO_{4}^{-} \rightarrow 2Mn^{2+} + 8H_{2}O \qquad 10HCl \rightarrow 5Cl_{2} + 10H^{+} + 10e^{-}$		
10 e ⁻ +16H ⁺ + 2MnO ₄ ⁻ → 2Mn ²⁺ +8H ₂ O		
$10\text{HCl} \rightarrow 5\text{Cl}_2 + 10\text{H}^+ + 10\text{e}^-$		
$6H^+ + 2MnO_4^- + 10HC1 \rightarrow 2Mn^{2+} + 5Cl_2 + 8H_2O$		

السؤال السادس: المعادلة التالية: غير موزونة:

 $Zn+NO_3$ $\rightarrow Zn(OH)_4$ $^2+NH_3$

والطلوب 1- تحديد العامل المؤكسد والعامل المختزل.

2- وزن المعادلة بطريقة أنصاف التفاعلات في الوسط الحمضي

العامل المؤكسد هو: -NO ₃	العامل المفتزل: Zn		
NO_3 $\rightarrow NH_3$	Zn →Zn(OH) ₄ ² -		
$9H^{+} + 8e^{-} + NO_{3}^{-} \rightarrow NH_{3} + 3H_{2}O$	$x4 Zn+4H_2O \rightarrow Zn(OH)_4^2+4H^++2e^-$		
$4Zn+16H_2O \rightarrow 4Zn(OH)_4^{2-}+16H^++8e^-$			
$9H^+ + 8e^- + NO_3^- \rightarrow NH_3 + 3H_2O$			
$4Zn+13H_2O+NO_3^- \rightarrow NH_3 +4Zn(OH)_4^2-+7H^+$			

السؤال السابع: المعادلة التالية: غير موزونة:

سلسلة مذكرات اقرأ (متوسط و ثانوي)

 $NO_3^- + Cl^- \rightarrow Cl_2 + NO$

والمطلوب 1- تحديد العامل المؤكسد والعامل المختزل.

2- وزن المعادلة بطريقة أنصاف التفاعلات في الوسط الحمضي.

العامل المؤكسد <u>NO3</u>	العامل المفترل Cl	العوامل
NO_3 \rightarrow NO	$Cl^- \rightarrow Cl_2$	انصاف التفاعلات
NO_3 \rightarrow NO	$\begin{array}{ccc} 2 \text{ Cl}^{-} & \rightarrow & \text{Cl} _2 \end{array}$	نزن الذرة المركزية
NO_3 \rightarrow $NO + 2H_2O$	$Cl^- \rightarrow Cl_2$	نزن ذرات الاكسجين
$4 \text{ H}^+ + \text{NO}_3^- \rightarrow \text{NO} + 2\text{H}_2\text{O}$	$Cl^- \rightarrow Cl_2$	نزن ذرات الهيدروجين
$2x \ 4H^+ + NO_3^- + 3e^- \rightarrow NO + 2H_2O$	$3\times 2 \text{ Cl}^- \rightarrow \text{Cl}_2 + 2e^-$	نزن الشحنات
$8H^+ + 2NO_3^- + 6e^- \rightarrow 2NO + 4H_2O$	6 Cl ⁻ →3 Cl ₂ +6e ⁻	نوحد الشحنات
$6 \text{ Cl}^{-} \rightarrow 3 \text{ Cl}_{2} + 6 \text{e}^{-}$		الجمع والاختصار
$8H^+ + 2NO_3^- + 6e^- \rightarrow 2NO_3^-$	+4H ₂ O	
$6 \text{ Cl}^- + 8\text{H}^+ + 2\text{NO}_3^- \rightarrow 2\text{NO} +$	4H ₂ O +3 Cl ₂	

<u> للتوصيل - 30 90 90 600 600</u>

السؤال الثامن: المعادلة التالية: غير موزونة:

$$SO_4^{-2} + I^- \rightarrow I_2 + H_2S$$

والمطلوب 1- تحديد العامل المؤكسد والعامل المختزل.

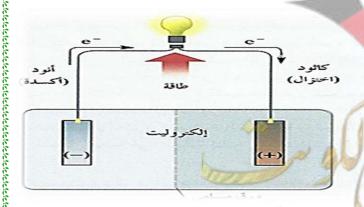
2- وزن المعادلة بطريقة أنصاف التفاعلات في الوسط الحمضي.

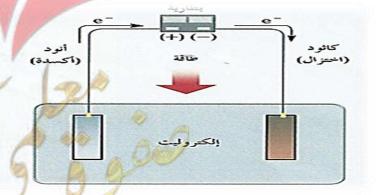
العامل المؤكسد SO ₄ -2	العامل المفترل I	العوامل
$SO_4^{-2} \rightarrow H_2S$	$\mathbf{I}^{\cdot} \rightarrow \mathbf{I}_2$	انصاف التفاعلات
$SO_4^{-2} \rightarrow H_2S$	$2I - \rightarrow I_2$	نزن الذرة المركزية
$SO_4^{-2} \rightarrow H_2S + 4H_2O$	$2I^{-} \rightarrow I_{2}$	نزن ذرات الاكسجين
$10 \text{ H}^+ + \text{ SO}_4^{-2} \rightarrow \text{ H}_2\text{S} + 4\text{H}_2\text{O}$	$2I^- \rightarrow I_2$	نزن ذرات
		الهيدروجين
$10H^{+}+ SO_{4}^{-2} +8e^{-} \rightarrow H_{2}S +4H_{2}O$	$4 \times 2I^- \rightarrow I_2 + 2e^-$	نزن الشحنات
$8H^{+}+ SO_{4}^{-2} + 8e^{-} \rightarrow H_{2}S + 4H_{2}O$	$8I^- \rightarrow 4I_2 + 8e^-$	نوحد الشحنات
$8~I^- \rightarrow 4I_2 + 8e^-$		الجمع والاختصار
$8H^+ + SO_4^{-2} + 8e^- \rightarrow H_2S + 4H_2O$		
$8I^{-} + 8H^{+} + SO_{4}^{-2} \rightarrow H_{2}S + 4H_{2}O + 4I_{2}$		

الدرس الثالث (1–3)الخلايا الإلكتروكيميائية

ما هي الخلايا الإلكتروكيميانية

هي أنظمة أو أجهزة تقوم بتحويل الطاقة الكهربانية إلى طاقة كيميانية أو العكس من خلال تفاعلات أكسدة واختزال


تهتم الكيمياء الكهربية بدراسة التفاعلات الكيميائية التي تعطي طاقة كهربية كما في الخلايا الجلفانية مثل العمود البسيط، المركم الرصاصي، وخلايا الوقود.


كما تهتم بدراسة تحويل الطاقة الكهربائية إلى تفاعلات كيميائية كما في الخلايا الإلكتروليتية.

<u>ما أهمية الخلايا الإلكترو كيميائية:</u>

- 1- تشغيل السيارة بوساطة المركم الرصاصي (بطارية السيارة) ، تشغيل الآلة الحاسبة والساعات.
- 2- استخلاص الصوديوم والألمنيوم من مركباتهما في الصناعة، تحضير غاز الكلور وهيدروكسيد الصوديوم ، الطلاء الكهريائي
 - 3- خلايا الوقود التي تستخدم في سفن الفضاء.

أنواع الخلايا الإلكتروكيميائية:

للتوصيل - 90 30 90 600

سلسلة مذكرات اقرأ {متوسط و ثانوى}

خلايا جلفانية (فولتية)		فلايا الكتروليتية (خلايا التحليل الكهربائي)	
من خلال التفاعلات الكيميائية	هي خلايا تنتج طاقة كهربائية	يا تحتاج إلى طاقة كهربائية وبنتج منها تفاعل كيميائي من	
والاختزال)	(الأكسدة	ة والاختزال	نوع الأكسد
الرصاصي وخلية الوقود.	أمثلة الخلية الجافة والمركم	عليل الكهربائي	أمثلة خلايا التد
تقائي		غير تلقائي	
الكاثود	الأنود	الكاثود	الأنود
موجب (+)	سالب (-)	سالب (-)	موجب (+)

تجربة: عند غمر شريحة خارصين من الخارصين (Zn) في محلول مائي من كبريتات النحاس II (CuSO₄) نلاحظ ما يلى:

1- يتآكل سطح قطب الخارصين.

 $\mathrm{Zn}
ightarrow \mathrm{Zn}^{2+} + 2\mathrm{\acute{e}}$ لتأكسد ذرات الخارصين

2- تتكون طبقة لونها بنى غامق على سطح شريحة الخارصين.

 $Cu^{2+} + 2\acute{e} \rightarrow Cu$ النحاس کاتیونات النحاس

تحدث عملية اكسدة للخارصين علل. - لانه أكثر نشاطا من النحاس.

في هذا التفاعل لا يُمكن الحصول على طاقة كهربية عند غمر شريحة من الفارصين في محلول كبريتات النحاس IIوانما يمكن الحصول على طاقة حرارية.

السبب: لأن تبادل الإلكترونات تم مباشرة بين سطح فلز الخارصين وبين كاتيونات النحاس المتلامسين في المحلول لعدم وجود موصل فلزي لحركة الإلكترونات (دائرة مفتوحة).

كيف يمكننا انتاج طاقة كهربائية من تفاعل اكسدة واخترال يعدث بشكل تلقائي ومستمر

يتم التفاعل بين الخارصين ومحلول كبريتات النحاس (II) بشكل تلقائي ويصحبه طرد حرارة أو طاقة حرارية قدرها 217.6 kJ/mol

تظهر هذه الحرارة بوضوح عند استبدال شريحة الخارصين بمسحوق الخارصين حيث يزيد مساحة سطح فتزداد سرعه التفاعل.

ويتم قياس الحرارة التي يطردها التفاعل باستخدام الترمومتر ويجرى في هذا التفاعل تبادل الإلكترونات مباشرة بين سطح فلز الخارصين وكاتيونات النحاس الملامسة لها.

 $Zn_{(s)} + Cu^{+2}_{(aq)} \longrightarrow Zn^{+2}_{(aq)} + Cu_{(s)}, \Delta H_f^{\circ} = -217.6 \text{ kJ/mol}$

ما شروط توليد التيار:

- 1- وجود فرق جهد ناتج من الاختلاف في النشاط الكيميائي ومن تفاعلات الاكسدة والاختزال
 - 2- وجود حاملات للشحنات (موصلات).

ما أنواع حاملات الشحنة		
وجه المقارنة موصلات فلزية موصلات إليكتروليتية		
المواد التي توصل التيار الكهربائي عن طريق حركة	التعريف	
	موصلات فلرية	

كيف يمكننا مقارنة نشاط الفلزات:

لمعرفة النشاط الكيميائي للفلزَّات يمكن أن نضع الفلزّ في محلول حمض مخفف (يحتوي على كاتيونات الهيدروجين) لمقارنة شدة التفاعل في حال حدوثه.

من ملاحظتك لشدة التفاعل عند وضع فلرات(الخارصين والعديد والنحاس)في محلول مائي لحمض الهيدروكلوريك أجب عما يلي:

- -1 الفلز الأكثر نشاطاً كيميائياً هو -2 ، والفلز الأقل نشاطاً كيميائياً هو -2 . . .
- 2- تمتلك كاتيونات فلز...... Zn اقل جهد اختزال (أقل ميلاً إلى اكتساب الإلكترونات).
- 3- تمتلك كاتيونات فلز.... <u>Cu...</u> أكبر جهد اختزال (أكبر ميلاً إلى اكتساب الإلكترونات).
 - $2 \dots Z_{n}$ الفلز الذي يتأكسد بسهولة (له أكبر جهد أكسدة) هو $2 \dots Z_{n}$
 - 5- ترتيب الفلزات السابقة تصاعديا حسب جهود اختزالها هو ... <u>Te ثم Fe ثم Cu</u>...
- $_{0.1}$ وزا علمت أن جهد اختزال النحاس يساوي ($_{0.34~
 m V}$ +)فإن جهد أكسدة النحاس يساوي .. $_{0.34~
 m V}$ -)...

كيف يمكننا تفسير نشاط الفلزات:

- العنصر الأكثر نشاطاً يتأكسد بسهولة وبالتالي تكون كاتيوناته أقل ميلاً لاكتساب الإلكترونات (أقل جهد اختزال)
- كاتيونات العنصر الأقل نشاطاً تُختزل بسهولة وبالتالي تكون أكبر ميلاً لاكتساب الإلكترونات (أكبر جهد اختزال)

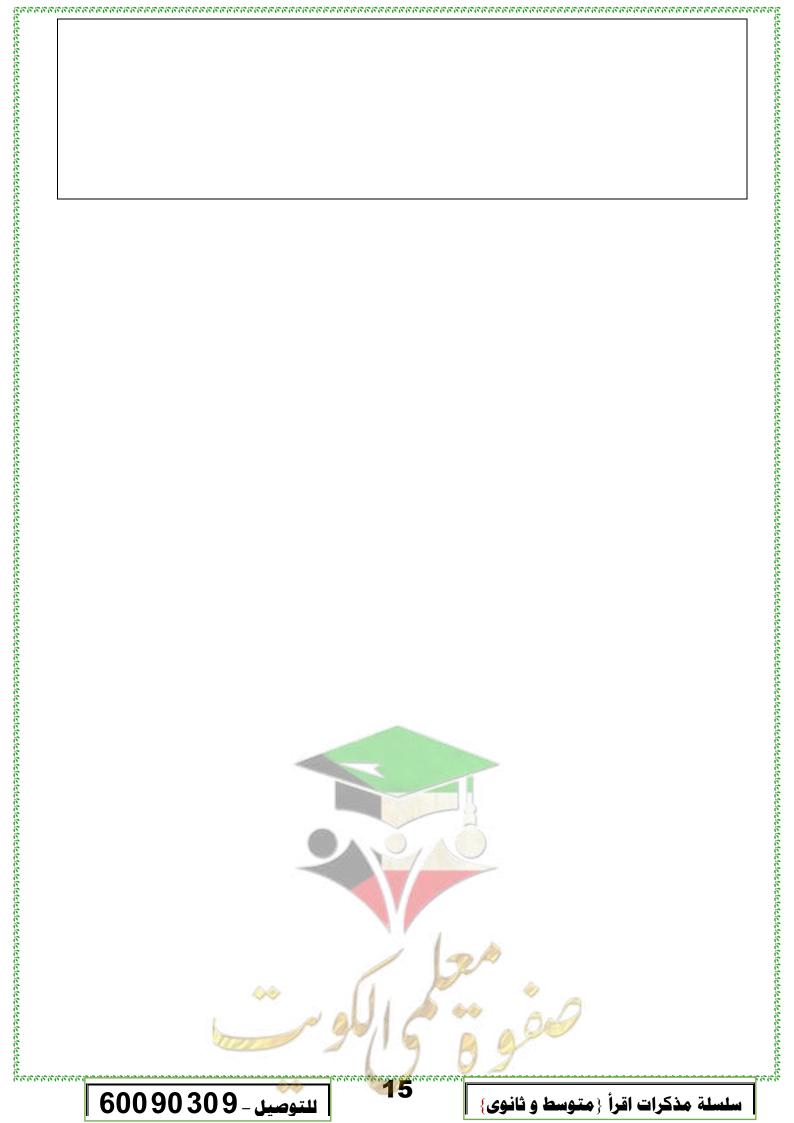
<u>ملاحظات هامة :</u>

- جهد الاختزال يساوي جهد الأكسدة مع اختلاف الإشارة.
- جهد الاختزال القياسي للهيدروجين يساوي صفرًا بحسب نظام الاتحاد الدولي للكيمياء النظرية والتطبيقية.

مخكرات

تجربه: وعاء يحتوي على شريحة خارصين وشريحة نحاس تسمى قطبان كل منهما مغمور مستفي على منهما مغمور مستفي من المتروليتي من كبريتات النحاس .

نلاحظ مایلی :


ماذا يعدث عند فتح الدائرة الكهربائية :

- 1- يحدث أكسدة عند شريحة الخارصين ويعتبر أنوداً.
- 2- يحدث اختزال لكاتيونات النحاس عند شري<mark>حة الخ</mark>ارصين.

<u>ماذا يحدث عند غلق الدائرة الكهربائية :</u>

- 1- يحدث أكسدة عند شريحة الخارصين ويعتبر أنوداً.
- 2- يحدث اختزال لكاتيونات النحاس عند شريحة النحاس ويعتبر النحاس كاثودا.
 - 3- عند غلق الدائرة فقط يُمكن الحصول على طاقة كهربية لفترة
- 4- للحصول على تيار كهربائي والتحكم في استمرارية التفاعل أعد نصفا الخليّة في مكانين منفصلين فيزيائيًا أي (الخلية الجلفانية)

سلسلة مذكرات اقرأ

للمتوسط والثانوي اطلبها الان تصلك حيثما كنت

60090309

ملاحظة: المذكرة الكاملة تحوي المنهج كامل حسب مقرر هذا العام الشرح+ تدريبات +حل الكتاب +بنوك معلومات +اختبارات قصيرة غير محلولة ثم حلها + اختبارات نهائية غير محلولة ثم حلها + اختبارات نهائية غير محلولة ثم حلها وكل هذا بدينارين فقط

عرض خاص عند طلب مذكرات الصف كاملة يكون التوصيل مجاني

كسود قنساة اقسراً تلجرام

کود واتساب مذکرات اقرأ

كود صفحة الانستجرام