

الأسئلة المقالية:

(1) بسط التعبيرات التالية:

(a)
$$\frac{x^{\frac{1}{2}} \cdot y^{-\frac{1}{3}}}{x^{\frac{-3}{4}} \cdot y^{\frac{-1}{2}}}$$
, $x > 0$, $y > 0$

$$(b)\left(\frac{16x^{14}}{81y^{18}}\right)^{\frac{1}{2}}, x \geq 0, y > 0$$

$$(c)\left(\sqrt[4]{x}\cdot\sqrt[4]{y^3}\right)^{-12}$$
, $x_{,y}\epsilon Q^+$

$$(d)\left[\left(\sqrt{x^3y^3}\right)^{\frac{1}{3}}\right]^{-1} \quad x, y \in Q^+$$

(2) أوجد مجوعة حل المعادلات التالية:

(a)
$$\sqrt{5x+4}-7=0$$

(b)
$$\sqrt{5x} - \sqrt{2x+9} = 0$$

(c)
$$\sqrt{8x} - 2\sqrt{4x - 16} = 0$$

$$(d) \ \sqrt{5x-1}+3=x$$

(e)
$$2(x+3)^{\frac{3}{2}}=54$$

$$(f) (1-x)^{\frac{2}{5}}-4=0$$

(3) أوجد مجوعة حل المعادلات التالية:

(a)
$$5^{x^2-4}=1$$

$$(b) \ 3^{x^2+5x} = \frac{1}{81}$$

(4) أوجد مجال الدوال التالية:

(a)
$$f(x) = x^3 - 4x^2 - 4 + \sqrt{x - 9}$$

(b)
$$f(x) = (2x^2 + x)\sqrt{8 - 2x}$$

$$(c) f(x) = \frac{2x-1}{\sqrt{3+x}}$$

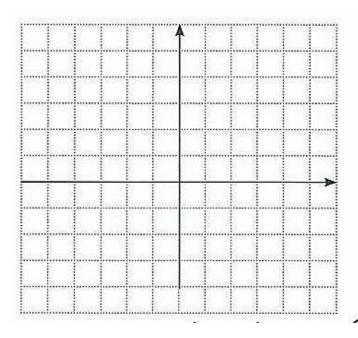
(d)
$$f(x) = \frac{\sqrt{5-4x}}{x^2+4}$$

(5) اكتب معادلة القطع المكافئ الذي رأسه نقطة الأصل ويمر بالنقطة (4,2) واذكر ما إذا كان بيانه مفتوحا لأعلى أم لأسفل.

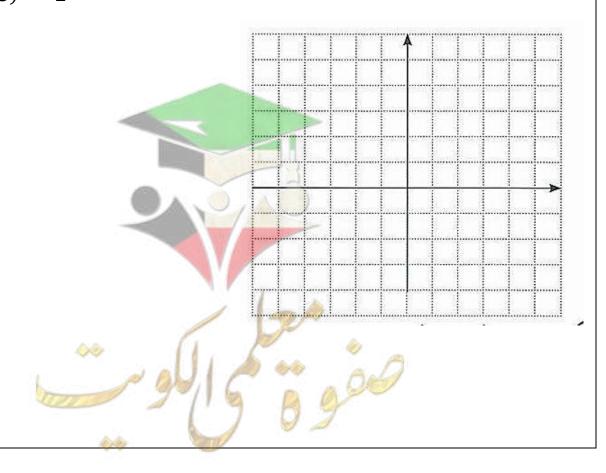
(5, -4) ويمر بالنقطة المكافئ الذي رأسه (3, 4) ويمر بالنقطة (6)

(7) ارسم منحنى الدالة:

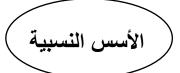
(1)
$$y = (x+3)^2 + 1$$



(2)
$$y = -2(x-3)^2 - 1$$



البنود الموضوعية



في التمارين (5-1)، ظلّل (a) إذا كانت العبارة صحيحة و (b) إذا كانت العبارة خاطئة.

(1)
$$16^{-\frac{3}{4}} = 32^{-\frac{3}{5}}$$

(4)
$$\sqrt[4]{\sqrt{x}} = x$$
, $x > 0$

(5)
$$\sqrt{32} \times \sqrt{16^{-1}} = 4$$

$$\widehat{a}$$
 \widehat{b}

في البنود (12-6)، ظلّل رمز الدائرة الدال على الإجابة الصحيحة.

(6) إذا كان n > 0 ، فإن التعبير الذي $\frac{4}{4n^2}$ هو:

(a)
$$(4n^2)^{\frac{1}{4}}$$

(b)
$$2n^{\frac{1}{2}}$$

$$(c) (2n)^{\frac{1}{2}}$$

$$(\mathbf{d}) \sqrt{2n}$$

(7) إذا كان:
$$0 > y > 0$$
 فإن التعبير $\frac{56^{\frac{1}{3}} \times y^{\frac{5}{3}}}{(7y^2)^{\frac{1}{3}}}$ يساوي:

$$\bigcirc b) \frac{1}{7}y$$

$$\frac{8}{7}y$$

(8)
$$(\sqrt[4]{x^{-2}y^4})^{-2} = x \neq 0, y \neq 0$$

$$: x \neq 0 , y \neq 0$$

(a)
$$|x^{-1}|y^2$$
 (b) $|x|y^{-2}$

$$(\mathbf{b}) |x| y^{-2}$$

$$\bigcirc$$
 xy^2

(9)
$$\sqrt{\frac{1}{\sqrt[3]{5}} \times \frac{1}{\sqrt[3]{5^2}}} =$$

(b)
$$\frac{1}{5}$$

$$\bigcirc$$
 5¹

(d)
$$5^{\frac{2}{3}}$$

(10) إذا كان $x^2 - xy + y^2 = 4$, x + y = 2 فإن $\sqrt[6]{x^3 + y^3}$ يساوي.

$$\bigcirc$$
a $\sqrt{2}$

(a) $5^{-\frac{1}{2}}$

(b)
$$\sqrt[3]{2}$$

$$(d)$$
 2

(12) إن قيمة التعبير
$$x > 0$$
, $x > 0$ إن قيمة التعبير (12)

$$\bigcirc$$
 a x

$$\bigcirc b) \frac{1}{x}$$

$$\mathbf{d}$$
 \sqrt{x}

حل المعادلات

في التمارين (5-1)، ظلّل (a) إذا كانت العبارة صحيحة و (b) إذا كانت العبارة خاطئة.

- $^{(b)}$

(1) مجموعة حل $1 = 7^{3-x}$ هي

- \bigcirc

(2) مجموعة حل $\sqrt{x-1} = \sqrt{1-x}$ هي

- \bigcirc
- \bigcirc
- (a)
- (b)

- $x = 3\sqrt{2}$ فإن $3\sqrt{9 + x^2} = 3$
 - $2^{x^2-4} = \frac{1}{32}$ المعادلة x = -1 (4)
- \mathbb{R}^- هي $25^{|x|+\frac{1}{2}} = 5^{1-2x}$ هي (5)

في التمارين (10-6)، ظلَّل رمز الدائرة الدال على الإجابة الصحيحة:

(6) مجموعة حل $(\sqrt{x^{20}})^{\frac{1}{5}} - x^2 = 0$

- $(a) \{0\}$
- (b) \mathbb{R}^+
- (c) \mathbb{R}^-

(7) مجموعة حل $\sqrt{x-2} = \sqrt{x-2}$ هي:

- (a) $\{2\}$
- **(b)** $\{1,2\}$
- (c) $\{1,2,3\}$ (d) $\{2,3\}$

(8) مجموعة حل $3\sqrt{2x^2+2} = 3\sqrt{3-x}$ هي:

(a) $\{-1,\frac{1}{2}\}$

- (b) $\{\frac{1}{2}\}$
- (c) $\left\{-1, \frac{-1}{2}\right\}$ (d) $\left\{1, \frac{1}{2}\right\}$

(9) مجموعة حل $x^2 = |x|$ هي:

- $(a) \{-1,0,1\}$
- $(b) \{0,1\}$
- **c** {0}
- (d) {1}

(a) -2

(10) إذا كان $x = 3^{2-x}$ فإن x تساوي:

مجال الدالة

في التمارين (5-1)، ظلل a إذا كانت العبارة صحيحة و b إذا كانت العبارة خاطئة.

- $^{(b)}$

 \mathbb{R} هو $f(x) = \sqrt{(x-2)^2}$ هو (1)

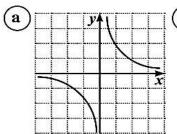
 $[3,\infty)$ هو $f(x) = \frac{3}{\sqrt{2x-6}}$ هو (2)

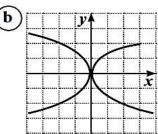
 $(-\infty,0]$ هو $f(x)=\sqrt{-x}$ هال الدالة (3)

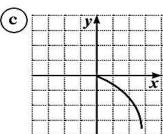
- (b) (b) (b)
- $[-3,\infty)$ هو $f(x) = \frac{1}{x^2}\sqrt{x+3}$ هو (4)
 - \mathbb{R} هو f(x) = |x| 2 هو (5)

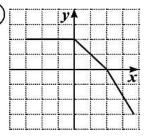
في التمارين (11-6)، ظلل رمز الدائرة الدالة على الإجابة الصحيحة.

(6) أيًّا مما يلى لا يمثل بيان دالة.









(7) $f(x) = \frac{x^2 - 1}{x^2 + 2x + 1}$ هو:

(a) R

- (b) $\mathbb{R}/\{1\}$
- (c) $\mathbb{R}/\{-1,1\}$
- (d) $\mathbb{R}/\{-1\}$ (8) مجال الدالة $f(x) = \frac{\sqrt{x^2}}{x}$ هو:

- (a) $\mathbb{R}/\{0\}$
- (b) $[0,\infty)$
- \bigcirc $(-\infty,0)$
- (\mathbf{d}) $(0,\infty)$

- (b) $\mathbb{R}/\{0,1\}$
- © R-{0}

(9) مجال الدالة $f(x) = \frac{x-1}{x-\sqrt{x}}$ هو:

- (a) $\mathbb{R}/\{1\}$
- - (10) مجال الدالة $f(x) = \frac{x}{\sqrt{x+1}-1}$ هو:

- (a) $(0,\infty)$
- **(b)** [1, ∞)
- (c) $(-1,\infty)$
- (d) $[-1,\infty)/\{0\}$
- $f \cdot g$ الدالة $f \cdot g$ فإن مجال الدالة $f(x) = x\sqrt{x}$, $g:[-2,2] \to \mathbb{R}$, $g(x) = x^2$ هو: (11)
- (a) [-2,2]

(b) [0,2]

(c)(0,2)

ليس أيًّا مما سبق صحيحًا (d

الدوال التربيعية والقطوع المكافئة

في التمارين (5-1)، ظلل (a) إذا كانت العبارة صحيحة وظلل (b) إذا كانت العبارة خاطئة.

(a) (b)

(1) المعادلة $y = 2x^2 - 2(3-x)^2$ تمثل معادلة قطع مكافئ.

(a) (b)

(2) القطع المكافئ $y = -\frac{1}{3}(x+2)^2 - 3$ فتحته إلى الأعلى.

- (a) (b)
- $y = \frac{1}{2}x^2 2$ يكون بيانها أكثر اتساعًا من بيان الدالة $y = 2(x-1)^2 + 2$ (3) المعادلة $y = -(x-3)^2 2$ الدالة $y = -(x-3)^2 2$ قيمة عظمى.
- (a) (b)

P(2, 3) يمر بالنقطة $y = (-x+2)^2 + 3$ يمر بالنقطة (5)

(a) (b)

في التمارين (11-6)، ظلل رمز الدائرة الدالة على الإجابة الصحيحة.

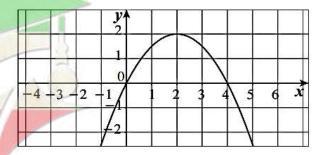
- (6) الدالة $y = -2x^2$ يكون رسمها أوسع من رسم بيان الدالة $y = a(3-x)^2 2$ إذا كان؛
- (a) |a| = 2
- (b) |a| > 2
- (c) a < 2
- $(\mathbf{d}) |a| < 2$
- (7) معادلة القطع المكافئ $y = 2x^2$ الذي تم إزاحة رأسه وحدتين يسارًا و4 وحدات لأعلى هي:
- (a) $y = (2x+2)^2 + 4$

(b) $y = 2(x-2)^2 + 4$

(c) $y = 2(x+2)^2 + 4$

(d) $y = 2(x+2)^2 - 4$

(8) الشكل أدناه يمثل منحنى قطع مكافئ معادلته هي:



(a) $y = (x-2)^2 + 2$

b $y = \frac{1}{2}(x-2)^2 + 2$

 $y = -\frac{1}{2}(x-2)^2 - 2$

d $y = -\frac{1}{2}(x-2)^2 + 2$

(9) القطع المكافئ $y = a(x-h)^2 + k$ يقطع المحورين على الأكثر في:

نقطتين (b

4 نقاط (d

(10) القيمة الصغرى للدالة $y = \frac{1}{3}(3-x)^2 - 2$ هي عند النقطة.

b (-3,2)

d (3,2)

نقطة (a

3 نقاط (c

(3,-2)

c (-3,-2)

مع تمنياتنا بالنجاح والتوفيق